cmathw commited on
Commit
6a3eebb
·
1 Parent(s): cee600b

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 286.36 +/- 16.12
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f97af411560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f97af4115f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f97af411680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f97af411710>", "_build": "<function ActorCriticPolicy._build at 0x7f97af4117a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f97af411830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f97af4118c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f97af411950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f97af4119e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f97af411a70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f97af411b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f97af45d810>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651844699.769172, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOihbx73pG6TCwqPY8gkDOKP7U6/ieBswAAAAAAAIA/8u6DvmM0dj8KT769uGMBv/3w6L4yq0g9AAAAAAAAAABNpwC9cVEBu8W2a7sjJpM8g0wTPBpofr0AAIA/AACAP40ooL2cbCo+HujuPnqay74QO2o+gPyWPgAAAAAAAAAAmrg2Pkbe7T5UoLS+7FP0vitdSD34gIS+AAAAAAAAAAC6uxG+Y8X0PhjLOD7qH/C+yYINvtqECD4AAAAAAAAAADPzljmOF6e8k8XBO0XTAj12gMi7GZuuuwAAgD8AAIA/MyUxPC21tD9gnxw+NWSYvbkR6Lhb2787AAAAAAAAAABN4ii97JiEu3s8bTwFopA8wNTBvJBFdz0AAIA/AACAP2ZGrjs4n5+7EAhXu8GVrTznMPE8lX+SvQAAgD8AAIA/5k+VPZ6aLz96W3W7HmYNvyaKxj3WJA69AAAAAAAAAAAzZr28tokCvN2OZ7zwTZc8KhdYPSrefL0AAIA/AACAPyZanT2kJUC72ouXvhR7Ib4xz1q8C9WOPwAAgD8AAAAAzbIpveFwubpyIDazyYwzMHglhznwN84zAACAPwAAgD8qbFe+11WCPw6vB723Cge/jkPCvlRirz0AAAAAAAAAAM3EADyRafQ+q1DxvUlhAL8W3HG8lsexvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJ71vfC3ZcECUhpRSlIwBbJRLyowBdJRHQLlQj2ycCo11fZQoaAZoCWgPQwg/AKlNXP5xQJSGlFKUaBVLzmgWR0C5ULMqaw2VdX2UKGgGaAloD0MI73IR3wlTcECUhpRSlGgVS8RoFkdAuVC+r/82rHV9lChoBmgJaA9DCNdoOdBDL3NAlIaUUpRoFUu/aBZHQLlQ3KwpvxZ1fZQoaAZoCWgPQwimDYelAfhnQJSGlFKUaBVN6ANoFkdAuVD4vrWy1XV9lChoBmgJaA9DCE7TZwdcCXJAlIaUUpRoFUvXaBZHQLlRA/bTMJR1fZQoaAZoCWgPQwjw3Hu4pE1xQJSGlFKUaBVL1GgWR0C5UUDIeYD1dX2UKGgGaAloD0MIEqJ8QUu1cUCUhpRSlGgVS+VoFkdAuVFC+PBBRnV9lChoBmgJaA9DCPaZsz4la3NAlIaUUpRoFUvpaBZHQLlRWiIcinp1fZQoaAZoCWgPQwhj7e9sT8xzQJSGlFKUaBVLxWgWR0C5UXML0BfbdX2UKGgGaAloD0MIlbiOccX0b0CUhpRSlGgVS8toFkdAuVGOqjrRjXV9lChoBmgJaA9DCGh3SDFA8GdAlIaUUpRoFU3oA2gWR0C5UZTG1hLHdX2UKGgGaAloD0MIJ0pCIi1ocECUhpRSlGgVS7FoFkdAuVGvhegL7XV9lChoBmgJaA9DCHOiXYXUQXFAlIaUUpRoFUvGaBZHQLlR6LJSzgN1fZQoaAZoCWgPQwh3Loz0InJyQJSGlFKUaBVLv2gWR0C5UfD3h4t6dX2UKGgGaAloD0MIpMaEmMsxcECUhpRSlGgVS8poFkdAuVIUxEfDDXV9lChoBmgJaA9DCAZLdQEveXNAlIaUUpRoFUvZaBZHQLlSLg2qDK51fZQoaAZoCWgPQwgudvus8lJyQJSGlFKUaBVLr2gWR0C5UivtIClrdX2UKGgGaAloD0MInOCbps/3cECUhpRSlGgVS85oFkdAuVJAtz0Yj3V9lChoBmgJaA9DCJijx++t53JAlIaUUpRoFUvKaBZHQLlSQ0yxiXp1fZQoaAZoCWgPQwiaIyu/DJpyQJSGlFKUaBVLu2gWR0C5UmRZlnRLdX2UKGgGaAloD0MIJA7ZQHoZc0CUhpRSlGgVS/FoFkdAuVrVCw8nu3V9lChoBmgJaA9DCHhjQWGQIXJAlIaUUpRoFUvKaBZHQLla4ZGrjo91fZQoaAZoCWgPQwhGtYgo5oRzQJSGlFKUaBVL4mgWR0C5Wvc580DVdX2UKGgGaAloD0MIFyzVBXxkckCUhpRSlGgVS7hoFkdAuVr29PDYRXV9lChoBmgJaA9DCGlSCrr9tXFAlIaUUpRoFUvKaBZHQLla+bT+ee51fZQoaAZoCWgPQwiwBFJiFydxQJSGlFKUaBVLvmgWR0C5WvwE2YOUdX2UKGgGaAloD0MIg1K0cm/Cc0CUhpRSlGgVS+toFkdAuVsHP9kz43V9lChoBmgJaA9DCFTjpZsEG3JAlIaUUpRoFUu2aBZHQLlbDE87p3Z1fZQoaAZoCWgPQwiOQLyuXwhwQJSGlFKUaBVLv2gWR0C5W0zTrmhedX2UKGgGaAloD0MIaw97oUA5ckCUhpRSlGgVS8toFkdAuVtqWPcSG3V9lChoBmgJaA9DCJUtknbjJnJAlIaUUpRoFUvMaBZHQLlbjxkd3jd1fZQoaAZoCWgPQwioUrMHmjByQJSGlFKUaBVLxmgWR0C5W7IqoZQ6dX2UKGgGaAloD0MI9pZyvhjfcUCUhpRSlGgVS9NoFkdAuVu35wfhdnV9lChoBmgJaA9DCJ2BkZd1BXFAlIaUUpRoFUvKaBZHQLlbtt0FKTV1fZQoaAZoCWgPQwhj7ISX4FByQJSGlFKUaBVL2mgWR0C5W8CrDIikdX2UKGgGaAloD0MIG55eKQvTckCUhpRSlGgVS9toFkdAuVv1u4wyqXV9lChoBmgJaA9DCJZcxeJ3M3JAlIaUUpRoFUu0aBZHQLlcEjVQQ+V1fZQoaAZoCWgPQwg17WKaqX1wQJSGlFKUaBVLt2gWR0C5XCokZ75VdX2UKGgGaAloD0MIXfxtTxAtcUCUhpRSlGgVS8xoFkdAuVwwPRRdhXV9lChoBmgJaA9DCAQBMnTspXBAlIaUUpRoFUu5aBZHQLlcM987ZFp1fZQoaAZoCWgPQwhEaW/wBdtxQJSGlFKUaBVL0mgWR0C5XFt4JNTMdX2UKGgGaAloD0MIkC42rRSCcECUhpRSlGgVS8toFkdAuVxgWfseGXV9lChoBmgJaA9DCL+CNGPRq3JAlIaUUpRoFUvOaBZHQLlcbScLBsR1fZQoaAZoCWgPQwg1ejVAaZxzQJSGlFKUaBVL3GgWR0C5XHIPTXrddX2UKGgGaAloD0MIEFoPXyZZckCUhpRSlGgVS89oFkdAuVy1m+TNdXV9lChoBmgJaA9DCNh+MsYHxW5AlIaUUpRoFUvKaBZHQLlc8LeyiVV1fZQoaAZoCWgPQwiR1ELJ5GlxQJSGlFKUaBVLy2gWR0C5XRSv1UVBdX2UKGgGaAloD0MIradWXx19c0CUhpRSlGgVS8toFkdAuV0bej2zwHV9lChoBmgJaA9DCGAeMuUDq3FAlIaUUpRoFUvRaBZHQLldJky1uzh1fZQoaAZoCWgPQwirXn6nCZFzQJSGlFKUaBVL/WgWR0C5XSr/CIk7dX2UKGgGaAloD0MIN1MhHkkscUCUhpRSlGgVS91oFkdAuV1F5/smfHV9lChoBmgJaA9DCMk9Xd1xbXFAlIaUUpRoFUu0aBZHQLldVVH4Glh1fZQoaAZoCWgPQwhBgAwdu5RvQJSGlFKUaBVLzmgWR0C5XWUFr2xqdX2UKGgGaAloD0MI0Jfe/hx2cECUhpRSlGgVS8JoFkdAuV2H06HTJHV9lChoBmgJaA9DCFThz/Dme3NAlIaUUpRoFUvDaBZHQLldjnw5NoJ1fZQoaAZoCWgPQwh/3H75ZHtwQJSGlFKUaBVLs2gWR0C5XayJ0nw5dX2UKGgGaAloD0MIyeNp+cHwckCUhpRSlGgVS8loFkdAuV3IcrAgxXV9lChoBmgJaA9DCB3KUBVT4HBAlIaUUpRoFUvCaBZHQLldy2aUiY91fZQoaAZoCWgPQwjcSxqjdbJxQJSGlFKUaBVL0GgWR0C5XdDMJQchdX2UKGgGaAloD0MII8DpXbx8c0CUhpRSlGgVS/BoFkdAuV3gcfeUIXV9lChoBmgJaA9DCCXLSSj9P3NAlIaUUpRoFUvPaBZHQLleImbLEDR1fZQoaAZoCWgPQwh2wHXFzN5yQJSGlFKUaBVLt2gWR0C5Xlhu0kWzdX2UKGgGaAloD0MIfJ3Ul+XVc0CUhpRSlGgVS7JoFkdAuV5d8zAN5XV9lChoBmgJaA9DCAOWXMXiLnJAlIaUUpRoFUvGaBZHQLlebdbgTAZ1fZQoaAZoCWgPQwjNO07R0S9xQJSGlFKUaBVL2mgWR0C5XnBF3IMjdX2UKGgGaAloD0MIPKJCdTO1cUCUhpRSlGgVS9poFkdAuV6h79hqkHV9lChoBmgJaA9DCLQB2IBI0XJAlIaUUpRoFUvLaBZHQLleuDRMN+d1fZQoaAZoCWgPQwi3Yn/ZPZlvQJSGlFKUaBVL0mgWR0C5XrS+6Ae8dX2UKGgGaAloD0MId9uF5jo2c0CUhpRSlGgVS8poFkdAuV7GEYfnwHV9lChoBmgJaA9DCBmuDoB4hnJAlIaUUpRoFUvGaBZHQLle5HVwxWV1fZQoaAZoCWgPQwjONczQ+HNyQJSGlFKUaBVLwWgWR0C5XvmYWtU5dX2UKGgGaAloD0MI46jcRG3DckCUhpRSlGgVS7loFkdAuV8OlSCOFXV9lChoBmgJaA9DCBrAWyBBXHNAlIaUUpRoFUvnaBZHQLlfFm16Vt51fZQoaAZoCWgPQwh7TQ8KirlyQJSGlFKUaBVLxGgWR0C5XxnKr7wbdX2UKGgGaAloD0MIweEFESnGcUCUhpRSlGgVS8toFkdAuV8njNpudnV9lChoBmgJaA9DCOPfZ1z4B3JAlIaUUpRoFUvXaBZHQLlfUKc/dIp1fZQoaAZoCWgPQwhW0/VE12dLQJSGlFKUaBVLgmgWR0C5X5EdvKlpdX2UKGgGaAloD0MI9BjlmZftckCUhpRSlGgVS9NoFkdAuV+RJnQIEHV9lChoBmgJaA9DCL7e/fEeeXFAlIaUUpRoFUu4aBZHQLlfraWX1J11fZQoaAZoCWgPQwjb3QN0H51yQJSGlFKUaBVLy2gWR0C5X7guM+/ydX2UKGgGaAloD0MINPeQ8D0TdECUhpRSlGgVS8ZoFkdAuV+0kD6nBXV9lChoBmgJaA9DCC2xMhq5E3NAlIaUUpRoFUvDaBZHQLlfvkLhJiB1fZQoaAZoCWgPQwi6FFeVPQBzQJSGlFKUaBVLw2gWR0C5X+y2x6fKdX2UKGgGaAloD0MIo5BkVi88ckCUhpRSlGgVS75oFkdAuV/5SflIVnV9lChoBmgJaA9DCJc3h2v123BAlIaUUpRoFUvDaBZHQLlgDn7Hhjx1fZQoaAZoCWgPQwieQUP/BIZvQJSGlFKUaBVLymgWR0C5YD0ahpQDdX2UKGgGaAloD0MIXANbJdiPcUCUhpRSlGgVS8JoFkdAuWBcj4YaYXV9lChoBmgJaA9DCLCryVOWfHJAlIaUUpRoFUvOaBZHQLlgXK0D2al1fZQoaAZoCWgPQwiiz0cZMR9xQJSGlFKUaBVLvmgWR0C5YF4pH7P6dX2UKGgGaAloD0MINL4vLlVTb0CUhpRSlGgVS9NoFkdAuWCIyN4qw3V9lChoBmgJaA9DCHQkl/+Q529AlIaUUpRoFUvOaBZHQLlgjrwe/6B1fZQoaAZoCWgPQwi4PNaMzFRzQJSGlFKUaBVL12gWR0C5YMawD/2kdX2UKGgGaAloD0MI8YCyKVfTcUCUhpRSlGgVS71oFkdAuWDaNIbwSnV9lChoBmgJaA9DCP4qwHcb1G5AlIaUUpRoFUvOaBZHQLlg+Suhbnp1fZQoaAZoCWgPQwgO9buwNXhyQJSGlFKUaBVLxWgWR0C5YQcnVoYfdX2UKGgGaAloD0MIdvwXCEJ4cECUhpRSlGgVS8FoFkdAuWEG+ajN6nV9lChoBmgJaA9DCC4aMh7lBXJAlIaUUpRoFUu/aBZHQLlhDoLofSx1fZQoaAZoCWgPQwhmv+50p0tzQJSGlFKUaBVLz2gWR0C5YSL2pQ1rdX2UKGgGaAloD0MIv/T25yJgckCUhpRSlGgVS99oFkdAuWF4fhddFHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1348, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43f3b1dabef8a1d026221242ada33e2b0b9b3ab66194dbc4f0ce26c27978f523
3
+ size 143987
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f97af411560>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f97af4115f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f97af411680>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f97af411710>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f97af4117a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f97af411830>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f97af4118c0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f97af411950>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f97af4119e0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f97af411a70>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f97af411b00>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f97af45d810>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 5013504,
46
+ "_total_timesteps": 5000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651844699.769172,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOihbx73pG6TCwqPY8gkDOKP7U6/ieBswAAAAAAAIA/8u6DvmM0dj8KT769uGMBv/3w6L4yq0g9AAAAAAAAAABNpwC9cVEBu8W2a7sjJpM8g0wTPBpofr0AAIA/AACAP40ooL2cbCo+HujuPnqay74QO2o+gPyWPgAAAAAAAAAAmrg2Pkbe7T5UoLS+7FP0vitdSD34gIS+AAAAAAAAAAC6uxG+Y8X0PhjLOD7qH/C+yYINvtqECD4AAAAAAAAAADPzljmOF6e8k8XBO0XTAj12gMi7GZuuuwAAgD8AAIA/MyUxPC21tD9gnxw+NWSYvbkR6Lhb2787AAAAAAAAAABN4ii97JiEu3s8bTwFopA8wNTBvJBFdz0AAIA/AACAP2ZGrjs4n5+7EAhXu8GVrTznMPE8lX+SvQAAgD8AAIA/5k+VPZ6aLz96W3W7HmYNvyaKxj3WJA69AAAAAAAAAAAzZr28tokCvN2OZ7zwTZc8KhdYPSrefL0AAIA/AACAPyZanT2kJUC72ouXvhR7Ib4xz1q8C9WOPwAAgD8AAAAAzbIpveFwubpyIDazyYwzMHglhznwN84zAACAPwAAgD8qbFe+11WCPw6vB723Cge/jkPCvlRirz0AAAAAAAAAAM3EADyRafQ+q1DxvUlhAL8W3HG8lsexvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.0027007999999999477,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJ71vfC3ZcECUhpRSlIwBbJRLyowBdJRHQLlQj2ycCo11fZQoaAZoCWgPQwg/AKlNXP5xQJSGlFKUaBVLzmgWR0C5ULMqaw2VdX2UKGgGaAloD0MI73IR3wlTcECUhpRSlGgVS8RoFkdAuVC+r/82rHV9lChoBmgJaA9DCNdoOdBDL3NAlIaUUpRoFUu/aBZHQLlQ3KwpvxZ1fZQoaAZoCWgPQwimDYelAfhnQJSGlFKUaBVN6ANoFkdAuVD4vrWy1XV9lChoBmgJaA9DCE7TZwdcCXJAlIaUUpRoFUvXaBZHQLlRA/bTMJR1fZQoaAZoCWgPQwjw3Hu4pE1xQJSGlFKUaBVL1GgWR0C5UUDIeYD1dX2UKGgGaAloD0MIEqJ8QUu1cUCUhpRSlGgVS+VoFkdAuVFC+PBBRnV9lChoBmgJaA9DCPaZsz4la3NAlIaUUpRoFUvpaBZHQLlRWiIcinp1fZQoaAZoCWgPQwhj7e9sT8xzQJSGlFKUaBVLxWgWR0C5UXML0BfbdX2UKGgGaAloD0MIlbiOccX0b0CUhpRSlGgVS8toFkdAuVGOqjrRjXV9lChoBmgJaA9DCGh3SDFA8GdAlIaUUpRoFU3oA2gWR0C5UZTG1hLHdX2UKGgGaAloD0MIJ0pCIi1ocECUhpRSlGgVS7FoFkdAuVGvhegL7XV9lChoBmgJaA9DCHOiXYXUQXFAlIaUUpRoFUvGaBZHQLlR6LJSzgN1fZQoaAZoCWgPQwh3Loz0InJyQJSGlFKUaBVLv2gWR0C5UfD3h4t6dX2UKGgGaAloD0MIpMaEmMsxcECUhpRSlGgVS8poFkdAuVIUxEfDDXV9lChoBmgJaA9DCAZLdQEveXNAlIaUUpRoFUvZaBZHQLlSLg2qDK51fZQoaAZoCWgPQwgudvus8lJyQJSGlFKUaBVLr2gWR0C5UivtIClrdX2UKGgGaAloD0MInOCbps/3cECUhpRSlGgVS85oFkdAuVJAtz0Yj3V9lChoBmgJaA9DCJijx++t53JAlIaUUpRoFUvKaBZHQLlSQ0yxiXp1fZQoaAZoCWgPQwiaIyu/DJpyQJSGlFKUaBVLu2gWR0C5UmRZlnRLdX2UKGgGaAloD0MIJA7ZQHoZc0CUhpRSlGgVS/FoFkdAuVrVCw8nu3V9lChoBmgJaA9DCHhjQWGQIXJAlIaUUpRoFUvKaBZHQLla4ZGrjo91fZQoaAZoCWgPQwhGtYgo5oRzQJSGlFKUaBVL4mgWR0C5Wvc580DVdX2UKGgGaAloD0MIFyzVBXxkckCUhpRSlGgVS7hoFkdAuVr29PDYRXV9lChoBmgJaA9DCGlSCrr9tXFAlIaUUpRoFUvKaBZHQLla+bT+ee51fZQoaAZoCWgPQwiwBFJiFydxQJSGlFKUaBVLvmgWR0C5WvwE2YOUdX2UKGgGaAloD0MIg1K0cm/Cc0CUhpRSlGgVS+toFkdAuVsHP9kz43V9lChoBmgJaA9DCFTjpZsEG3JAlIaUUpRoFUu2aBZHQLlbDE87p3Z1fZQoaAZoCWgPQwiOQLyuXwhwQJSGlFKUaBVLv2gWR0C5W0zTrmhedX2UKGgGaAloD0MIaw97oUA5ckCUhpRSlGgVS8toFkdAuVtqWPcSG3V9lChoBmgJaA9DCJUtknbjJnJAlIaUUpRoFUvMaBZHQLlbjxkd3jd1fZQoaAZoCWgPQwioUrMHmjByQJSGlFKUaBVLxmgWR0C5W7IqoZQ6dX2UKGgGaAloD0MI9pZyvhjfcUCUhpRSlGgVS9NoFkdAuVu35wfhdnV9lChoBmgJaA9DCJ2BkZd1BXFAlIaUUpRoFUvKaBZHQLlbtt0FKTV1fZQoaAZoCWgPQwhj7ISX4FByQJSGlFKUaBVL2mgWR0C5W8CrDIikdX2UKGgGaAloD0MIG55eKQvTckCUhpRSlGgVS9toFkdAuVv1u4wyqXV9lChoBmgJaA9DCJZcxeJ3M3JAlIaUUpRoFUu0aBZHQLlcEjVQQ+V1fZQoaAZoCWgPQwg17WKaqX1wQJSGlFKUaBVLt2gWR0C5XCokZ75VdX2UKGgGaAloD0MIXfxtTxAtcUCUhpRSlGgVS8xoFkdAuVwwPRRdhXV9lChoBmgJaA9DCAQBMnTspXBAlIaUUpRoFUu5aBZHQLlcM987ZFp1fZQoaAZoCWgPQwhEaW/wBdtxQJSGlFKUaBVL0mgWR0C5XFt4JNTMdX2UKGgGaAloD0MIkC42rRSCcECUhpRSlGgVS8toFkdAuVxgWfseGXV9lChoBmgJaA9DCL+CNGPRq3JAlIaUUpRoFUvOaBZHQLlcbScLBsR1fZQoaAZoCWgPQwg1ejVAaZxzQJSGlFKUaBVL3GgWR0C5XHIPTXrddX2UKGgGaAloD0MIEFoPXyZZckCUhpRSlGgVS89oFkdAuVy1m+TNdXV9lChoBmgJaA9DCNh+MsYHxW5AlIaUUpRoFUvKaBZHQLlc8LeyiVV1fZQoaAZoCWgPQwiR1ELJ5GlxQJSGlFKUaBVLy2gWR0C5XRSv1UVBdX2UKGgGaAloD0MIradWXx19c0CUhpRSlGgVS8toFkdAuV0bej2zwHV9lChoBmgJaA9DCGAeMuUDq3FAlIaUUpRoFUvRaBZHQLldJky1uzh1fZQoaAZoCWgPQwirXn6nCZFzQJSGlFKUaBVL/WgWR0C5XSr/CIk7dX2UKGgGaAloD0MIN1MhHkkscUCUhpRSlGgVS91oFkdAuV1F5/smfHV9lChoBmgJaA9DCMk9Xd1xbXFAlIaUUpRoFUu0aBZHQLldVVH4Glh1fZQoaAZoCWgPQwhBgAwdu5RvQJSGlFKUaBVLzmgWR0C5XWUFr2xqdX2UKGgGaAloD0MI0Jfe/hx2cECUhpRSlGgVS8JoFkdAuV2H06HTJHV9lChoBmgJaA9DCFThz/Dme3NAlIaUUpRoFUvDaBZHQLldjnw5NoJ1fZQoaAZoCWgPQwh/3H75ZHtwQJSGlFKUaBVLs2gWR0C5XayJ0nw5dX2UKGgGaAloD0MIyeNp+cHwckCUhpRSlGgVS8loFkdAuV3IcrAgxXV9lChoBmgJaA9DCB3KUBVT4HBAlIaUUpRoFUvCaBZHQLldy2aUiY91fZQoaAZoCWgPQwjcSxqjdbJxQJSGlFKUaBVL0GgWR0C5XdDMJQchdX2UKGgGaAloD0MII8DpXbx8c0CUhpRSlGgVS/BoFkdAuV3gcfeUIXV9lChoBmgJaA9DCCXLSSj9P3NAlIaUUpRoFUvPaBZHQLleImbLEDR1fZQoaAZoCWgPQwh2wHXFzN5yQJSGlFKUaBVLt2gWR0C5Xlhu0kWzdX2UKGgGaAloD0MIfJ3Ul+XVc0CUhpRSlGgVS7JoFkdAuV5d8zAN5XV9lChoBmgJaA9DCAOWXMXiLnJAlIaUUpRoFUvGaBZHQLlebdbgTAZ1fZQoaAZoCWgPQwjNO07R0S9xQJSGlFKUaBVL2mgWR0C5XnBF3IMjdX2UKGgGaAloD0MIPKJCdTO1cUCUhpRSlGgVS9poFkdAuV6h79hqkHV9lChoBmgJaA9DCLQB2IBI0XJAlIaUUpRoFUvLaBZHQLleuDRMN+d1fZQoaAZoCWgPQwi3Yn/ZPZlvQJSGlFKUaBVL0mgWR0C5XrS+6Ae8dX2UKGgGaAloD0MId9uF5jo2c0CUhpRSlGgVS8poFkdAuV7GEYfnwHV9lChoBmgJaA9DCBmuDoB4hnJAlIaUUpRoFUvGaBZHQLle5HVwxWV1fZQoaAZoCWgPQwjONczQ+HNyQJSGlFKUaBVLwWgWR0C5XvmYWtU5dX2UKGgGaAloD0MI46jcRG3DckCUhpRSlGgVS7loFkdAuV8OlSCOFXV9lChoBmgJaA9DCBrAWyBBXHNAlIaUUpRoFUvnaBZHQLlfFm16Vt51fZQoaAZoCWgPQwh7TQ8KirlyQJSGlFKUaBVLxGgWR0C5XxnKr7wbdX2UKGgGaAloD0MIweEFESnGcUCUhpRSlGgVS8toFkdAuV8njNpudnV9lChoBmgJaA9DCOPfZ1z4B3JAlIaUUpRoFUvXaBZHQLlfUKc/dIp1fZQoaAZoCWgPQwhW0/VE12dLQJSGlFKUaBVLgmgWR0C5X5EdvKlpdX2UKGgGaAloD0MI9BjlmZftckCUhpRSlGgVS9NoFkdAuV+RJnQIEHV9lChoBmgJaA9DCL7e/fEeeXFAlIaUUpRoFUu4aBZHQLlfraWX1J11fZQoaAZoCWgPQwjb3QN0H51yQJSGlFKUaBVLy2gWR0C5X7guM+/ydX2UKGgGaAloD0MINPeQ8D0TdECUhpRSlGgVS8ZoFkdAuV+0kD6nBXV9lChoBmgJaA9DCC2xMhq5E3NAlIaUUpRoFUvDaBZHQLlfvkLhJiB1fZQoaAZoCWgPQwi6FFeVPQBzQJSGlFKUaBVLw2gWR0C5X+y2x6fKdX2UKGgGaAloD0MIo5BkVi88ckCUhpRSlGgVS75oFkdAuV/5SflIVnV9lChoBmgJaA9DCJc3h2v123BAlIaUUpRoFUvDaBZHQLlgDn7Hhjx1fZQoaAZoCWgPQwieQUP/BIZvQJSGlFKUaBVLymgWR0C5YD0ahpQDdX2UKGgGaAloD0MIXANbJdiPcUCUhpRSlGgVS8JoFkdAuWBcj4YaYXV9lChoBmgJaA9DCLCryVOWfHJAlIaUUpRoFUvOaBZHQLlgXK0D2al1fZQoaAZoCWgPQwiiz0cZMR9xQJSGlFKUaBVLvmgWR0C5YF4pH7P6dX2UKGgGaAloD0MINL4vLlVTb0CUhpRSlGgVS9NoFkdAuWCIyN4qw3V9lChoBmgJaA9DCHQkl/+Q529AlIaUUpRoFUvOaBZHQLlgjrwe/6B1fZQoaAZoCWgPQwi4PNaMzFRzQJSGlFKUaBVL12gWR0C5YMawD/2kdX2UKGgGaAloD0MI8YCyKVfTcUCUhpRSlGgVS71oFkdAuWDaNIbwSnV9lChoBmgJaA9DCP4qwHcb1G5AlIaUUpRoFUvOaBZHQLlg+Suhbnp1fZQoaAZoCWgPQwgO9buwNXhyQJSGlFKUaBVLxWgWR0C5YQcnVoYfdX2UKGgGaAloD0MIdvwXCEJ4cECUhpRSlGgVS8FoFkdAuWEG+ajN6nV9lChoBmgJaA9DCC4aMh7lBXJAlIaUUpRoFUu/aBZHQLlhDoLofSx1fZQoaAZoCWgPQwhmv+50p0tzQJSGlFKUaBVLz2gWR0C5YSL2pQ1rdX2UKGgGaAloD0MIv/T25yJgckCUhpRSlGgVS99oFkdAuWF4fhddFHVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 1348,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:120d079633f357d314c86aa26c907ff1a1083b75e5fbe5a4feae20dfe5b97773
3
+ size 84893
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:953c7e1fb6a47f51debc416c7b4a7f09d2186d3b1a0887c526274fffbaa2df34
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:662ecec3a381339896fc87e123ecef133b2f073479d799b967fccf5b9293560c
3
+ size 175726
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 286.3618728953799, "std_reward": 16.12335333518147, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T15:16:52.743558"}