--- language: - pt license: apache-2.0 library_name: transformers tags: - text-generation-inference - llama-cpp - gguf-my-repo datasets: - nicholasKluge/instruct-aira-dataset-v3 - cnmoro/GPT4-500k-Augmented-PTBR-Clean - rhaymison/orca-math-portuguese-64k - nicholasKluge/reward-aira-dataset metrics: - perplexity pipeline_tag: text-generation widget: - text: Cite algumas bandas de rock brasileiras famosas. example_title: Exemplo - text: Invente uma história sobre um encanador com poderes mágicos. example_title: Exemplo - text: Qual cidade é a capital do estado do Rio Grande do Sul? example_title: Exemplo - text: Diga o nome de uma maravilha culinária característica da cosinha Portuguesa? example_title: Exemplo inference: parameters: repetition_penalty: 1.2 temperature: 0.2 top_k: 20 top_p: 0.2 max_new_tokens: 150 co2_eq_emissions: emissions: 21890 source: CodeCarbon training_type: pre-training geographical_location: Germany hardware_used: NVIDIA A100-SXM4-80GB base_model: TucanoBR/Tucano-1b1-Instruct model-index: - name: Tucano-1b1-Instruct results: - task: type: text-generation name: Text Generation dataset: name: CALAME-PT type: NOVA-vision-language/calame-pt split: all args: num_few_shot: 0 metrics: - type: acc value: 56.55 name: accuracy source: url: https://huggingface.co/datasets/NOVA-vision-language/calame-pt name: Context-Aware LAnguage Modeling Evaluation for Portuguese - task: type: text-generation name: Text Generation dataset: name: LAMBADA-PT type: TucanoBR/lambada-pt split: train args: num_few_shot: 0 metrics: - type: acc value: 35.53 name: accuracy source: url: https://huggingface.co/datasets/TucanoBR/lambada-pt name: LAMBADA-PT - task: type: text-generation name: Text Generation dataset: name: ENEM Challenge (No Images) type: eduagarcia/enem_challenge split: train args: num_few_shot: 3 metrics: - type: acc value: 21.06 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BLUEX (No Images) type: eduagarcia-temp/BLUEX_without_images split: train args: num_few_shot: 3 metrics: - type: acc value: 26.01 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: OAB Exams type: eduagarcia/oab_exams split: train args: num_few_shot: 3 metrics: - type: acc value: 26.47 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 RTE type: assin2 split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 67.78 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 STS type: eduagarcia/portuguese_benchmark split: test args: num_few_shot: 10 metrics: - type: pearson value: 8.88 name: pearson source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: FaQuAD NLI type: ruanchaves/faquad-nli split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 43.97 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HateBR Binary type: ruanchaves/hatebr split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 31.28 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: PT Hate Speech Binary type: hate_speech_portuguese split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 41.23 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: tweetSentBR type: eduagarcia-temp/tweetsentbr split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 22.03 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: ARC-Challenge (PT) type: arc_pt args: num_few_shot: 25 metrics: - type: acc_norm value: 30.77 name: normalized accuracy source: url: https://github.com/nlp-uoregon/mlmm-evaluation name: Evaluation Framework for Multilingual Large Language Models - task: type: text-generation name: Text Generation dataset: name: HellaSwag (PT) type: hellaswag_pt args: num_few_shot: 10 metrics: - type: acc_norm value: 43.5 name: normalized accuracy source: url: https://github.com/nlp-uoregon/mlmm-evaluation name: Evaluation Framework for Multilingual Large Language Models - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (PT) type: truthfulqa_pt args: num_few_shot: 0 metrics: - type: mc2 value: 41.14 name: bleurt source: url: https://github.com/nlp-uoregon/mlmm-evaluation name: Evaluation Framework for Multilingual Large Language Models - task: type: text-generation name: Text Generation dataset: name: Alpaca-Eval (PT) type: alpaca_eval_pt args: num_few_shot: 0 metrics: - type: lc_winrate value: 8.8 name: length controlled winrate source: url: https://github.com/tatsu-lab/alpaca_eval name: AlpacaEval --- # cnmoro/Tucano-1b1-Instruct-Q8_0-GGUF This model was converted to GGUF format from [`TucanoBR/Tucano-1b1-Instruct`](https://huggingface.co/TucanoBR/Tucano-1b1-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/TucanoBR/Tucano-1b1-Instruct) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo cnmoro/Tucano-1b1-Instruct-Q8_0-GGUF --hf-file tucano-1b1-instruct-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo cnmoro/Tucano-1b1-Instruct-Q8_0-GGUF --hf-file tucano-1b1-instruct-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo cnmoro/Tucano-1b1-Instruct-Q8_0-GGUF --hf-file tucano-1b1-instruct-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo cnmoro/Tucano-1b1-Instruct-Q8_0-GGUF --hf-file tucano-1b1-instruct-q8_0.gguf -c 2048 ```