Update README.md
Browse files
README.md
CHANGED
@@ -14,21 +14,27 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-large](https://huggingface.co/michiyasunaga/BioLinkBERT-large) on [MedNLI](https://physionet.org/content/mednli/1.0.0/).
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
23 |
|
24 |
The accuracy for the test set is
|
25 |
```
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
32 |
```
|
33 |
The labels are
|
34 |
```
|
@@ -39,18 +45,6 @@ The labels are
|
|
39 |
},
|
40 |
```
|
41 |
|
42 |
-
## Model description
|
43 |
-
|
44 |
-
More information needed
|
45 |
-
|
46 |
-
## Intended uses & limitations
|
47 |
-
|
48 |
-
More information needed
|
49 |
-
|
50 |
-
## Training and evaluation data
|
51 |
-
|
52 |
-
More information needed
|
53 |
-
|
54 |
## Training procedure
|
55 |
|
56 |
### Training hyperparameters
|
|
|
14 |
|
15 |
This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-large](https://huggingface.co/michiyasunaga/BioLinkBERT-large) on [MedNLI](https://physionet.org/content/mednli/1.0.0/).
|
16 |
It achieves the following results on the evaluation set:
|
17 |
+
```
|
18 |
+
{
|
19 |
+
"eval_accuracy": 0.8788530230522156,
|
20 |
+
"eval_loss": 0.7843484878540039,
|
21 |
+
"eval_runtime": 39.7009,
|
22 |
+
"eval_samples": 1395,
|
23 |
+
"eval_samples_per_second": 35.138,
|
24 |
+
"eval_steps_per_second": 1.108
|
25 |
+
}
|
26 |
+
```
|
27 |
|
28 |
The accuracy for the test set is
|
29 |
```
|
30 |
+
{
|
31 |
+
"eval_accuracy": 0.8607594966888428,
|
32 |
+
"eval_loss": 0.879707932472229,
|
33 |
+
"eval_runtime": 27.4404,
|
34 |
+
"eval_samples": 1395,
|
35 |
+
"eval_samples_per_second": 51.821,
|
36 |
+
"eval_steps_per_second": 1.64
|
37 |
+
}
|
38 |
```
|
39 |
The labels are
|
40 |
```
|
|
|
45 |
},
|
46 |
```
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
## Training procedure
|
49 |
|
50 |
### Training hyperparameters
|