File size: 10,347 Bytes
44eca84 1028385 8833bbc 1028385 44eca84 f22aece 1028385 a407d29 1028385 abc0b46 44eca84 fa58912 44eca84 fa58912 44eca84 fa58912 44eca84 1028385 fa58912 1028385 44eca84 1028385 fa58912 811a69b fa58912 1028385 8833bbc fa58912 1028385 fa58912 1028385 fa58912 1028385 8833bbc fa58912 8833bbc 1028385 8833bbc abc0b46 8833bbc 44eca84 fa58912 8833bbc fa58912 8833bbc fa58912 8833bbc eabd9f8 8833bbc fa58912 8833bbc fa58912 8833bbc 1028385 44eca84 1028385 44eca84 fa58912 1028385 8833bbc fa58912 8833bbc fa58912 8833bbc fa58912 44eca84 fa58912 44eca84 fa58912 44eca84 8833bbc 1028385 9fb003c 8833bbc 9fb003c 1028385 811a69b 9fb003c 1028385 8833bbc fa58912 1028385 fa58912 1028385 44eca84 8ad9fee 44eca84 8ad9fee 44eca84 8ad9fee 44eca84 8ad9fee 44eca84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"source": [
"This Notebook is a Stable-diffusion tool which allows you to find similiar tokens from the SD 1.5 vocab.json that you can use for text-to-image generation."
],
"metadata": {
"id": "L7JTcbOdBPfh"
}
},
{
"cell_type": "code",
"source": [
"# Load the tokens into the colab\n",
"!git clone https://huggingface.co/datasets/codeShare/sd_tokens\n",
"import torch\n",
"from torch import linalg as LA\n",
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
"%cd /content/sd_tokens\n",
"token = torch.load('sd15_tensors.pt', map_location=device, weights_only=True)\n",
"#-----#\n",
"\n",
"#Import the vocab.json\n",
"import json\n",
"import pandas as pd\n",
"with open('vocab.json', 'r') as f:\n",
" data = json.load(f)\n",
"\n",
"_df = pd.DataFrame({'count': data})['count']\n",
"\n",
"vocab = {\n",
" value: key for key, value in _df.items()\n",
"}\n",
"#-----#\n",
"\n",
"# Define functions/constants\n",
"NUM_TOKENS = 49407\n",
"\n",
"def absolute_value(x):\n",
" return max(x, -x)\n",
"\n",
"def similarity(id_A , id_B):\n",
" #Tensors\n",
" A = token[id_A]\n",
" B = token[id_B]\n",
" #Tensor vector length (2nd order, i.e (a^2 + b^2 + ....)^(1/2)\n",
" _A = LA.vector_norm(A, ord=2)\n",
" _B = LA.vector_norm(B, ord=2)\n",
" #----#\n",
" result = torch.dot(A,B)/(_A*_B)\n",
" #similarity_pcnt = absolute_value(result.item()*100)\n",
" similarity_pcnt = result.item()*100\n",
" similarity_pcnt_aprox = round(similarity_pcnt, 3)\n",
" result = f'{similarity_pcnt_aprox} %'\n",
" return result\n",
"#----#\n",
"\n",
"mix_with = \"\"\n",
"mix_method = \"None\""
],
"metadata": {
"id": "Ch9puvwKH1s3"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#print(vocab[8922]) #the vocab item for ID 8922\n",
"#print(token[8922].shape) #dimension of the token"
],
"metadata": {
"id": "S_Yh9gH_OUA1"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Get the IDs from a prompt text.\n",
"\n",
"The prompt will be enclosed with the <|start-of-text|> and <|end-of-text|> tokens. Leave the field empty to get a random value tensor"
],
"metadata": {
"id": "f1-jS7YJApiO"
}
},
{
"cell_type": "code",
"source": [
"from transformers import AutoTokenizer\n",
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
"\n",
"prompt= \"banana\" # @param {type:'string'}\n",
"\n",
"tokenizer_output = tokenizer(text = prompt)\n",
"input_ids = tokenizer_output['input_ids']\n",
"print(input_ids)\n",
"id_A = input_ids[1]\n",
"A = token[id_A]\n",
"_A = LA.vector_norm(A, ord=2)\n",
"\n",
"#if no imput exists we just randomize the entire thing\n",
"if (prompt == \"\"):\n",
" id_A = -1\n",
" print(\"Tokenized prompt tensor A is a random valued tensor with no ID\")\n",
" R = torch.rand(768)\n",
" _R = LA.vector_norm(R, ord=2)\n",
" A = R*(_A/_R)\n",
"\n",
"#Save a copy of the tensor A\n",
"id_P = input_ids[1]\n",
"P = token[id_A]\n",
"_P = LA.vector_norm(A, ord=2)"
],
"metadata": {
"id": "RPdkYzT2_X85"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"OPTIONAL : Add/subtract + normalize above result with another token. Leave field empty to get a random value tensor"
],
"metadata": {
"id": "JKnz0aLFVGXc"
}
},
{
"cell_type": "code",
"source": [
"mix_with = \"\" # @param {type:'string'}\n",
"mix_method = \"None\" # @param [\"None\" , \"Average\", \"Subtract\"] {allow-input: true}\n",
"w = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
"\n",
"#prevent re-iterating A by reading from stored copy\n",
"id_A = id_P\n",
"A = P\n",
"_A = _P\n",
"#----#\n",
"\n",
"tokenizer_output = tokenizer(text = mix_with)\n",
"input_ids = tokenizer_output['input_ids']\n",
"id_C = input_ids[1]\n",
"C = token[id_C]\n",
"_C = LA.vector_norm(C, ord=2)\n",
"\n",
"#if no imput exists we just randomize the entire thing\n",
"if (mix_with == \"\"):\n",
" id_C = -1\n",
" print(\"Tokenized prompt 'mix_with' tensor C is a random valued tensor with no ID\")\n",
" R = torch.rand(768)\n",
" _R = LA.vector_norm(R, ord=2)\n",
" C = R*(_C/_R)\n",
"\n",
"if (mix_method == \"None\"):\n",
" print(\"No operation\")\n",
"\n",
"if (mix_method == \"Average\"):\n",
" A = w*A + (1-w)*C\n",
" _A = LA.vector_norm(A, ord=2)\n",
" print(\"Tokenized prompt tensor A has been recalculated as A = w*A + (1-w)*C , where C is the tokenized prompt 'mix_with' tensor C\")\n",
"\n",
"if (mix_method == \"Subtract\"):\n",
" tmp = (A/_A) - (C/_C)\n",
" _tmp = LA.vector_norm(tmp, ord=2)\n",
" A = tmp*((w*_A + (1-w)*_C)/_tmp)\n",
" _A = LA.vector_norm(A, ord=2)\n",
" print(\"Tokenized prompt tensor A has been recalculated as A = (w*_A + (1-w)*_C) * norm(w*A - (1-w)*C) , where C is the tokenized prompt 'mix_with' tensor C\")\n",
"\n",
"\n"
],
"metadata": {
"id": "oXbNSRSKPgRr"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Produce a list id IDs that are most similiar to the prompt ID at positiion 1 based on above result"
],
"metadata": {
"id": "3uBSZ1vWVCew"
}
},
{
"cell_type": "code",
"source": [
"\n",
"dots = torch.zeros(NUM_TOKENS)\n",
"for index in range(NUM_TOKENS):\n",
" id_B = index\n",
" B = token[id_B]\n",
" _B = LA.vector_norm(B, ord=2)\n",
" result = torch.dot(A,B)/(_A*_B)\n",
" result = absolute_value(result.item())\n",
" dots[index] = result\n",
"\n",
"name_A = \"A of random type\"\n",
"if (id_A>-1):\n",
" name_A = vocab[id_A]\n",
"\n",
"name_C = \"token C of random type\"\n",
"if (id_C>-1):\n",
" name_C = vocab[id_C]\n",
"\n",
"\n",
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
"#----#\n",
"if (mix_method == \"Average\"):\n",
" print(f'Calculated all cosine-similarities between the average of token {name_A} and {name_C} with Id_A = {id_A} and mixed Id_C = {id_C} as a 1x{sorted.shape[0]} tensor')\n",
"if (mix_method == \"Subtract\"):\n",
" print(f'Calculated all cosine-similarities between the subtract of token {name_A} and {name_C} with Id_A = {id_A} and mixed Id_C = {id_C} as a 1x{sorted.shape[0]} tensor')\n",
"if (mix_method == \"None\"):\n",
" print(f'Calculated all cosine-similarities between the token {name_A} with Id_A = {id_A} with the the rest of the {NUM_TOKENS} tokens as a 1x{sorted.shape[0]} tensor')"
],
"metadata": {
"id": "juxsvco9B0iV"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Print the sorted list from above result"
],
"metadata": {
"id": "y-Ig3glrVQC3"
}
},
{
"cell_type": "code",
"source": [
"list_size = 100 # @param {type:'number'}\n",
"\n",
"print_ID = False # @param {type:\"boolean\"}\n",
"print_Similarity = True # @param {type:\"boolean\"}\n",
"print_Name = True # @param {type:\"boolean\"}\n",
"print_Divider = True # @param {type:\"boolean\"}\n",
"\n",
"for index in range(list_size):\n",
" id = indices[index].item()\n",
" if (print_Name):\n",
" print(f'{vocab[id]}') # vocab item\n",
" if (print_ID):\n",
" print(f'ID = {id}') # IDs\n",
" if (print_Similarity):\n",
" print(f'similiarity = {round(sorted[index].item()*100,2)} %') # % value\n",
" if (print_Divider):\n",
" print('--------')"
],
"metadata": {
"id": "YIEmLAzbHeuo",
"collapsed": true
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Find the most similiar Tokens for given input"
],
"metadata": {
"id": "qqZ5DvfLBJnw"
}
},
{
"cell_type": "markdown",
"source": [
"Valid ID ranges for id_for_token_A / id_for_token_B are between 0 and 49407"
],
"metadata": {
"id": "kX72bAuhOtlT"
}
},
{
"cell_type": "code",
"source": [
"id_for_token_A = 4567 # @param {type:'number'}\n",
"id_for_token_B = 4343 # @param {type:'number'}\n",
"\n",
"similarity_str = 'The similarity between tokens A and B is ' + similarity(id_for_token_A , id_for_token_B)\n",
"\n",
"print(similarity_str)"
],
"metadata": {
"id": "MwmOdC9cNZty"
},
"execution_count": null,
"outputs": []
}
]
} |