codeShare commited on
Commit
04ba1c9
·
verified ·
1 Parent(s): 16db48a

Upload sd_token_similarity_calculator.ipynb

Browse files
Files changed (1) hide show
  1. sd_token_similarity_calculator.ipynb +48 -55
sd_token_similarity_calculator.ipynb CHANGED
@@ -25,15 +25,6 @@
25
  "id": "L7JTcbOdBPfh"
26
  }
27
  },
28
- {
29
- "cell_type": "code",
30
- "source": [],
31
- "metadata": {
32
- "id": "PBwVIuAjEdHA"
33
- },
34
- "execution_count": null,
35
- "outputs": []
36
- },
37
  {
38
  "cell_type": "code",
39
  "source": [
@@ -228,6 +219,42 @@
228
  "execution_count": null,
229
  "outputs": []
230
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
231
  {
232
  "cell_type": "markdown",
233
  "source": [
@@ -256,7 +283,8 @@
256
  "#You can leave the 'prompt' field empty to get a random value tensor. Since the tensor is random value, it will not correspond to any tensor in the vocab.json list , and this it will have no ID."
257
  ],
258
  "metadata": {
259
- "id": "RPdkYzT2_X85"
 
260
  },
261
  "execution_count": null,
262
  "outputs": []
@@ -284,7 +312,8 @@
284
  "_P = LA.vector_norm(A, ord=2)\n"
285
  ],
286
  "metadata": {
287
- "id": "YqdiF8DIz9Wu"
 
288
  },
289
  "execution_count": null,
290
  "outputs": []
@@ -340,7 +369,8 @@
340
  ],
341
  "metadata": {
342
  "id": "oXbNSRSKPgRr",
343
- "collapsed": true
 
344
  },
345
  "execution_count": null,
346
  "outputs": []
@@ -382,7 +412,8 @@
382
  ],
383
  "metadata": {
384
  "id": "juxsvco9B0iV",
385
- "collapsed": true
 
386
  },
387
  "execution_count": null,
388
  "outputs": []
@@ -419,7 +450,8 @@
419
  ],
420
  "metadata": {
421
  "id": "YIEmLAzbHeuo",
422
- "collapsed": true
 
423
  },
424
  "execution_count": null,
425
  "outputs": []
@@ -440,47 +472,8 @@
440
  ],
441
  "metadata": {
442
  "id": "MwmOdC9cNZty",
443
- "collapsed": true
444
- },
445
- "execution_count": null,
446
- "outputs": []
447
- },
448
- {
449
- "cell_type": "code",
450
- "source": [
451
- "# @title 💫 Compare Text encodings\n",
452
- "\n",
453
- "prompt_A = \"\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
454
- "prompt_B = \"\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
455
- "use_token_padding = True # @param {type:\"boolean\"}\n",
456
- "\n",
457
- "from transformers import CLIPProcessor, CLIPModel\n",
458
- "\n",
459
- "\n",
460
- "processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
461
- "\n",
462
- "model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
463
- "\n",
464
- "ids_A = processor.tokenizer(text=prompt_A, padding=use_token_padding, return_tensors=\"pt\")\n",
465
- "text_encoding_A = model.get_text_features(**ids_A)\n",
466
- "\n",
467
- "ids_B = processor.tokenizer(text=prompt_B, padding=use_token_padding, return_tensors=\"pt\")\n",
468
- "text_encoding_B = model.get_text_features(**ids_B)\n",
469
- "\n",
470
- "similarity_str = 'The similarity between the text_encoding for A:\"' + prompt_A + '\" and B: \"' + prompt_B +'\" is ' + token_similarity(text_encoding_A[0] , text_encoding_B[0])\n",
471
- "\n",
472
- "\n",
473
- "print(similarity_str)\n",
474
- "#outputs = model(**inputs)\n",
475
- "#logits_per_image = outputs.logits_per_image # this is the image-text similarity score\n",
476
- "#probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities\n",
477
- "\n",
478
- "\n",
479
- "\n"
480
- ],
481
- "metadata": {
482
- "id": "QQOjh5BvnG8M",
483
- "collapsed": true
484
  },
485
  "execution_count": null,
486
  "outputs": []
 
25
  "id": "L7JTcbOdBPfh"
26
  }
27
  },
 
 
 
 
 
 
 
 
 
28
  {
29
  "cell_type": "code",
30
  "source": [
 
219
  "execution_count": null,
220
  "outputs": []
221
  },
222
+ {
223
+ "cell_type": "code",
224
+ "source": [
225
+ "# @title 💫 Compare Text encodings\n",
226
+ "\n",
227
+ "prompt_A = \"\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
228
+ "prompt_B = \"\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
229
+ "use_token_padding = True # @param {type:\"boolean\"}\n",
230
+ "\n",
231
+ "from transformers import CLIPProcessor, CLIPModel\n",
232
+ "\n",
233
+ "processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
234
+ "\n",
235
+ "model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
236
+ "\n",
237
+ "ids_A = processor.tokenizer(text=prompt_A, padding=use_token_padding, return_tensors=\"pt\")\n",
238
+ "text_encoding_A = model.get_text_features(**ids_A)\n",
239
+ "\n",
240
+ "ids_B = processor.tokenizer(text=prompt_B, padding=use_token_padding, return_tensors=\"pt\")\n",
241
+ "text_encoding_B = model.get_text_features(**ids_B)\n",
242
+ "\n",
243
+ "similarity_str = 'The similarity between the text_encoding for A:\"' + prompt_A + '\" and B: \"' + prompt_B +'\" is ' + token_similarity(text_encoding_A[0] , text_encoding_B[0])\n",
244
+ "\n",
245
+ "\n",
246
+ "print(similarity_str)\n",
247
+ "#outputs = model(**inputs)\n",
248
+ "#logits_per_image = outputs.logits_per_image # this is the image-text similarity score\n",
249
+ "#probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities"
250
+ ],
251
+ "metadata": {
252
+ "id": "QQOjh5BvnG8M",
253
+ "collapsed": true
254
+ },
255
+ "execution_count": null,
256
+ "outputs": []
257
+ },
258
  {
259
  "cell_type": "markdown",
260
  "source": [
 
283
  "#You can leave the 'prompt' field empty to get a random value tensor. Since the tensor is random value, it will not correspond to any tensor in the vocab.json list , and this it will have no ID."
284
  ],
285
  "metadata": {
286
+ "id": "RPdkYzT2_X85",
287
+ "cellView": "form"
288
  },
289
  "execution_count": null,
290
  "outputs": []
 
312
  "_P = LA.vector_norm(A, ord=2)\n"
313
  ],
314
  "metadata": {
315
+ "id": "YqdiF8DIz9Wu",
316
+ "cellView": "form"
317
  },
318
  "execution_count": null,
319
  "outputs": []
 
369
  ],
370
  "metadata": {
371
  "id": "oXbNSRSKPgRr",
372
+ "collapsed": true,
373
+ "cellView": "form"
374
  },
375
  "execution_count": null,
376
  "outputs": []
 
412
  ],
413
  "metadata": {
414
  "id": "juxsvco9B0iV",
415
+ "collapsed": true,
416
+ "cellView": "form"
417
  },
418
  "execution_count": null,
419
  "outputs": []
 
450
  ],
451
  "metadata": {
452
  "id": "YIEmLAzbHeuo",
453
+ "collapsed": true,
454
+ "cellView": "form"
455
  },
456
  "execution_count": null,
457
  "outputs": []
 
472
  ],
473
  "metadata": {
474
  "id": "MwmOdC9cNZty",
475
+ "collapsed": true,
476
+ "cellView": "form"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
477
  },
478
  "execution_count": null,
479
  "outputs": []