Upload sd_token_similarity_calculator.ipynb
Browse files- sd_token_similarity_calculator.ipynb +138 -33
sd_token_similarity_calculator.ipynb
CHANGED
@@ -46,8 +46,18 @@
|
|
46 |
"NUM_PREFIX = 13662\n",
|
47 |
"NUM_SUFFIX = 32901\n",
|
48 |
"\n",
|
49 |
-
"PREFIX_ENC_VOCAB = 'encoded_prefix_to_girl'\n",
|
50 |
-
"SUFFIX_ENC_VOCAB =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
"\n",
|
52 |
"#Import the vocab.json\n",
|
53 |
"import json\n",
|
@@ -134,33 +144,21 @@
|
|
134 |
" return ' ' #<---- return whitespace if out of bounds\n",
|
135 |
"#--------#\n",
|
136 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
"#print(get_token(35894))\n"
|
138 |
],
|
139 |
"metadata": {
|
140 |
"id": "Ch9puvwKH1s3",
|
141 |
-
"collapsed": true
|
142 |
-
"colab": {
|
143 |
-
"base_uri": "https://localhost:8080/"
|
144 |
-
},
|
145 |
-
"outputId": "2333a33b-1344-4a14-bee6-060d98167715"
|
146 |
},
|
147 |
-
"execution_count":
|
148 |
-
"outputs": [
|
149 |
-
{
|
150 |
-
"output_type": "stream",
|
151 |
-
"name": "stdout",
|
152 |
-
"text": [
|
153 |
-
"Cloning into 'sd_tokens'...\n",
|
154 |
-
"remote: Enumerating objects: 72, done.\u001b[K\n",
|
155 |
-
"remote: Counting objects: 100% (69/69), done.\u001b[K\n",
|
156 |
-
"remote: Compressing objects: 100% (69/69), done.\u001b[K\n",
|
157 |
-
"remote: Total 72 (delta 24), reused 0 (delta 0), pack-reused 3 (from 1)\u001b[K\n",
|
158 |
-
"Unpacking objects: 100% (72/72), 1.34 MiB | 1.65 MiB/s, done.\n",
|
159 |
-
"Filtering content: 100% (10/10), 899.76 MiB | 50.12 MiB/s, done.\n",
|
160 |
-
"/content/sd_tokens\n"
|
161 |
-
]
|
162 |
-
}
|
163 |
-
]
|
164 |
},
|
165 |
{
|
166 |
"cell_type": "code",
|
@@ -316,18 +314,125 @@
|
|
316 |
"outputs": []
|
317 |
},
|
318 |
{
|
319 |
-
"cell_type": "
|
320 |
"source": [
|
321 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
"\n",
|
323 |
-
"
|
|
|
|
|
|
|
|
|
|
|
324 |
"\n",
|
325 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
"\n",
|
327 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
328 |
],
|
329 |
"metadata": {
|
330 |
-
"id": "
|
331 |
}
|
332 |
},
|
333 |
{
|
@@ -397,7 +502,7 @@
|
|
397 |
{
|
398 |
"cell_type": "code",
|
399 |
"source": [
|
400 |
-
"# @title Order pre-made text_encodings
|
401 |
"from transformers import AutoTokenizer\n",
|
402 |
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
403 |
"from transformers import CLIPProcessor, CLIPModel\n",
|
@@ -447,7 +552,7 @@
|
|
447 |
{
|
448 |
"cell_type": "code",
|
449 |
"source": [
|
450 |
-
"# @title Show the 10 most similiar suffix and prefix text-encodings to the image encoding\n",
|
451 |
"\n",
|
452 |
"_suffixes = '{'\n",
|
453 |
"for index in range(20):\n",
|
@@ -895,7 +1000,7 @@
|
|
895 |
"metadata": {
|
896 |
"id": "9ZiTsF9jV0TV"
|
897 |
},
|
898 |
-
"execution_count":
|
899 |
"outputs": []
|
900 |
},
|
901 |
{
|
|
|
46 |
"NUM_PREFIX = 13662\n",
|
47 |
"NUM_SUFFIX = 32901\n",
|
48 |
"\n",
|
49 |
+
"PREFIX_ENC_VOCAB = ['encoded_prefix_to_girl',]\n",
|
50 |
+
"SUFFIX_ENC_VOCAB = [\n",
|
51 |
+
" 'from_-encoded_suffix',\n",
|
52 |
+
" 'a_-_encoded_suffix' ,\n",
|
53 |
+
" 'by_-encoded_suffix' ,\n",
|
54 |
+
" 'encoded_suffix-_like']\n",
|
55 |
+
"\n",
|
56 |
+
"# Make sure these match above results\n",
|
57 |
+
"NUM_PREFIX_LISTS = 1\n",
|
58 |
+
"NUM_SUFFIX_LISTS = 4\n",
|
59 |
+
"#-----#\n",
|
60 |
+
"\n",
|
61 |
"\n",
|
62 |
"#Import the vocab.json\n",
|
63 |
"import json\n",
|
|
|
144 |
" return ' ' #<---- return whitespace if out of bounds\n",
|
145 |
"#--------#\n",
|
146 |
"\n",
|
147 |
+
"\n",
|
148 |
+
"def _modulus(_id,id_max):\n",
|
149 |
+
" id = _id\n",
|
150 |
+
" while(id>id_max):\n",
|
151 |
+
" id = id-id_max\n",
|
152 |
+
" return id\n",
|
153 |
+
"\n",
|
154 |
"#print(get_token(35894))\n"
|
155 |
],
|
156 |
"metadata": {
|
157 |
"id": "Ch9puvwKH1s3",
|
158 |
+
"collapsed": true
|
|
|
|
|
|
|
|
|
159 |
},
|
160 |
+
"execution_count": null,
|
161 |
+
"outputs": []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
},
|
163 |
{
|
164 |
"cell_type": "code",
|
|
|
314 |
"outputs": []
|
315 |
},
|
316 |
{
|
317 |
+
"cell_type": "code",
|
318 |
"source": [
|
319 |
+
"# @title 📝 Prompt similarity: Order pre-made text_encodings\n",
|
320 |
+
"prompt = \"photo of a banana\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
321 |
+
"from transformers import AutoTokenizer\n",
|
322 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
323 |
+
"from transformers import CLIPProcessor, CLIPModel\n",
|
324 |
+
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
325 |
+
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
326 |
"\n",
|
327 |
+
"# Get text features for user input\n",
|
328 |
+
"inputs = tokenizer(text = prompt, padding=True, return_tensors=\"pt\")\n",
|
329 |
+
"text_features_A = model.get_text_features(**inputs)\n",
|
330 |
+
"text_features_A = text_features_A/text_features_A.norm(p=2, dim=-1, keepdim=True)\n",
|
331 |
+
"name_A = prompt\n",
|
332 |
+
"#------#\n",
|
333 |
"\n",
|
334 |
+
"# Load the .db file for prefix encodings\n",
|
335 |
+
"import shelve\n",
|
336 |
+
"_iters = -1\n",
|
337 |
+
"RANGE = NUM_PREFIX\n",
|
338 |
+
"NUM_PREFIX_LISTS = 1\n",
|
339 |
+
"dots = results_sim = torch.zeros(RANGE*NUM_PREFIX_LISTS)\n",
|
340 |
+
"for _PREFIX_ENC_VOCAB in PREFIX_ENC_VOCAB:\n",
|
341 |
+
" _iters = _iters + 1\n",
|
342 |
+
" d = shelve.open(_PREFIX_ENC_VOCAB)\n",
|
343 |
+
" for _index in range(RANGE):\n",
|
344 |
+
" index = _iters*RANGE + _index\n",
|
345 |
+
" text_features = d[f'{_index}']\n",
|
346 |
+
" text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
347 |
+
" sim = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n",
|
348 |
+
" dots[index] = sim\n",
|
349 |
+
" #----#\n",
|
350 |
+
" d.close() #close the file\n",
|
351 |
+
"#------#\n",
|
352 |
+
"prefix_sorted, prefix_indices = torch.sort(dots,dim=0 , descending=True)\n",
|
353 |
+
"#------#\n",
|
354 |
"\n",
|
355 |
+
"# Load the .db file for prefix encodings\n",
|
356 |
+
"import shelve\n",
|
357 |
+
"_iters = -1\n",
|
358 |
+
"RANGE = NUM_SUFFIX\n",
|
359 |
+
"dots = results_sim = torch.zeros(RANGE*NUM_SUFFIX_LISTS)\n",
|
360 |
+
"for _SUFFIX_ENC_VOCAB in SUFFIX_ENC_VOCAB:\n",
|
361 |
+
" _iters = _iters + 1\n",
|
362 |
+
" d = shelve.open(_SUFFIX_ENC_VOCAB)\n",
|
363 |
+
" for _index in range(RANGE):\n",
|
364 |
+
" index = _iters*RANGE + _index\n",
|
365 |
+
" text_features = d[f'{_index}']\n",
|
366 |
+
" text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
367 |
+
" sim = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n",
|
368 |
+
" dots[index] = sim\n",
|
369 |
+
" #----#\n",
|
370 |
+
" d.close() #close the file\n",
|
371 |
+
"#------#\n",
|
372 |
+
"suffix_sorted, suffix_indices = torch.sort(dots,dim=0 , descending=True)\n",
|
373 |
+
"#------#\n",
|
374 |
+
"\n",
|
375 |
+
"#Print the results\n",
|
376 |
+
"#'from_-encoded_suffix',\n",
|
377 |
+
"#'a_-_encoded_suffix' ,\n",
|
378 |
+
"#'by_-encoded_suffix' ,\n",
|
379 |
+
"#'encoded_suffix-_like'\n",
|
380 |
+
"\n",
|
381 |
+
"# title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n",
|
382 |
+
"RANGE = 100\n",
|
383 |
+
"_suffixes = '{'\n",
|
384 |
+
"_sims = '{'\n",
|
385 |
+
"for index in range(RANGE):\n",
|
386 |
+
" id = int(suffix_indices[index])\n",
|
387 |
+
" ahead = \"from \"\n",
|
388 |
+
" behind = \"\"\n",
|
389 |
+
" if(id>NUM_SUFFIX*1):\n",
|
390 |
+
" ahead = \"a \"\n",
|
391 |
+
" if(id>NUM_SUFFIX*2):\n",
|
392 |
+
" ahead = \"by \"\n",
|
393 |
+
" if(id>NUM_SUFFIX*3):\n",
|
394 |
+
" ahead = \"\"\n",
|
395 |
+
" behind = \"like\"\n",
|
396 |
+
" id = _modulus(id,NUM_SUFFIX)\n",
|
397 |
+
" #------#\n",
|
398 |
+
" sim = suffix_sorted[index].item()\n",
|
399 |
+
" name = ahead + get_suffix(id) + behind\n",
|
400 |
+
" if(get_suffix(id) == ' '): name = ahead + f'{id}' + behind\n",
|
401 |
+
" _suffixes = _suffixes + name + '|'\n",
|
402 |
+
" _sims = _sims + f'{round(sim*100,2)} %' + '|'\n",
|
403 |
+
"#------#\n",
|
404 |
+
"_suffixes = (_suffixes + '}').replace('|}', '}')\n",
|
405 |
+
"_sims = (_sims + '}').replace('|}', '}')\n",
|
406 |
+
"\n",
|
407 |
+
"print('most similiar suffix items to prompt : ' + _suffixes)\n",
|
408 |
+
"print('similarity % for suffix items : ' + _sims)\n",
|
409 |
+
"print('')\n",
|
410 |
+
"\n",
|
411 |
+
"#-------#\n",
|
412 |
+
"\n",
|
413 |
+
"_prefixes = '{'\n",
|
414 |
+
"for index in range(RANGE):\n",
|
415 |
+
" id = f'{prefix_indices[index]}'\n",
|
416 |
+
" #sim = prefix_sorted[index]\n",
|
417 |
+
" name = get_prefix(id)\n",
|
418 |
+
" _prefixes = _prefixes + name + '|'\n",
|
419 |
+
"#------#\n",
|
420 |
+
"_prefixes = (_prefixes + '}').replace('|}', '}')\n",
|
421 |
+
"print('most similiar prefix suffix to image : ' + _prefixes)\n"
|
422 |
+
],
|
423 |
+
"metadata": {
|
424 |
+
"id": "xc-PbIYF428y"
|
425 |
+
},
|
426 |
+
"execution_count": null,
|
427 |
+
"outputs": []
|
428 |
+
},
|
429 |
+
{
|
430 |
+
"cell_type": "markdown",
|
431 |
+
"source": [
|
432 |
+
"# Below are the Image interrogators"
|
433 |
],
|
434 |
"metadata": {
|
435 |
+
"id": "qZvLkJCtGC89"
|
436 |
}
|
437 |
},
|
438 |
{
|
|
|
502 |
{
|
503 |
"cell_type": "code",
|
504 |
"source": [
|
505 |
+
"# @title 🖼️ Image similarity : Order pre-made text_encodings\n",
|
506 |
"from transformers import AutoTokenizer\n",
|
507 |
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
508 |
"from transformers import CLIPProcessor, CLIPModel\n",
|
|
|
552 |
{
|
553 |
"cell_type": "code",
|
554 |
"source": [
|
555 |
+
"# @title 🖼️ Show the 10 most similiar suffix and prefix text-encodings to the image encoding\n",
|
556 |
"\n",
|
557 |
"_suffixes = '{'\n",
|
558 |
"for index in range(20):\n",
|
|
|
1000 |
"metadata": {
|
1001 |
"id": "9ZiTsF9jV0TV"
|
1002 |
},
|
1003 |
+
"execution_count": null,
|
1004 |
"outputs": []
|
1005 |
},
|
1006 |
{
|