Upload sd_token_similarity_calculator.ipynb
Browse files- sd_token_similarity_calculator.ipynb +426 -24
sd_token_similarity_calculator.ipynb
CHANGED
@@ -82,10 +82,29 @@
|
|
82 |
"mix_method = \"None\""
|
83 |
],
|
84 |
"metadata": {
|
85 |
-
"id": "Ch9puvwKH1s3"
|
|
|
|
|
|
|
|
|
|
|
86 |
},
|
87 |
-
"execution_count":
|
88 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
},
|
90 |
{
|
91 |
"cell_type": "code",
|
@@ -106,10 +125,22 @@
|
|
106 |
"#You can leave the 'prompt' field empty to get a random value tensor. Since the tensor is random value, it will not correspond to any tensor in the vocab.json list , and this it will have no ID."
|
107 |
],
|
108 |
"metadata": {
|
109 |
-
"id": "RPdkYzT2_X85"
|
|
|
|
|
|
|
|
|
110 |
},
|
111 |
-
"execution_count":
|
112 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
},
|
114 |
{
|
115 |
"cell_type": "code",
|
@@ -136,7 +167,7 @@
|
|
136 |
"metadata": {
|
137 |
"id": "YqdiF8DIz9Wu"
|
138 |
},
|
139 |
-
"execution_count":
|
140 |
"outputs": []
|
141 |
},
|
142 |
{
|
@@ -189,10 +220,24 @@
|
|
189 |
"#OPTIONAL : Add/subtract + normalize above result with another token. Leave field empty to get a random value tensor"
|
190 |
],
|
191 |
"metadata": {
|
192 |
-
"id": "oXbNSRSKPgRr"
|
|
|
|
|
|
|
|
|
|
|
193 |
},
|
194 |
-
"execution_count":
|
195 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
},
|
197 |
{
|
198 |
"cell_type": "code",
|
@@ -230,10 +275,30 @@
|
|
230 |
"#Produce a list id IDs that are most similiar to the prompt ID at positiion 1 based on above result"
|
231 |
],
|
232 |
"metadata": {
|
233 |
-
"id": "juxsvco9B0iV"
|
|
|
|
|
|
|
|
|
|
|
234 |
},
|
235 |
-
"execution_count":
|
236 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
},
|
238 |
{
|
239 |
"cell_type": "code",
|
@@ -260,10 +325,321 @@
|
|
260 |
],
|
261 |
"metadata": {
|
262 |
"id": "YIEmLAzbHeuo",
|
263 |
-
"collapsed": true
|
|
|
|
|
|
|
|
|
264 |
},
|
265 |
-
"execution_count":
|
266 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
},
|
268 |
{
|
269 |
"cell_type": "code",
|
@@ -280,10 +656,23 @@
|
|
280 |
"#Valid ID ranges for id_for_token_A / id_for_token_B are between 0 and 49407"
|
281 |
],
|
282 |
"metadata": {
|
283 |
-
"id": "MwmOdC9cNZty"
|
|
|
|
|
|
|
|
|
|
|
284 |
},
|
285 |
-
"execution_count":
|
286 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
},
|
288 |
{
|
289 |
"cell_type": "code",
|
@@ -292,7 +681,7 @@
|
|
292 |
"\n",
|
293 |
"prompt_A = \"\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
294 |
"prompt_B = \"\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
295 |
-
"use_token_padding =
|
296 |
"\n",
|
297 |
"from transformers import CLIPProcessor, CLIPModel\n",
|
298 |
"\n",
|
@@ -307,7 +696,7 @@
|
|
307 |
"ids_B = processor.tokenizer(text=prompt_B, padding=use_token_padding, return_tensors=\"pt\")\n",
|
308 |
"text_encoding_B = model.get_text_features(**ids_B)\n",
|
309 |
"\n",
|
310 |
-
"similarity_str = 'The similarity between the text_encoding for A and B is ' + token_similarity(text_encoding_A[0] , text_encoding_B[0])\n",
|
311 |
"\n",
|
312 |
"\n",
|
313 |
"print(similarity_str)\n",
|
@@ -319,10 +708,23 @@
|
|
319 |
"\n"
|
320 |
],
|
321 |
"metadata": {
|
322 |
-
"id": "QQOjh5BvnG8M"
|
|
|
|
|
|
|
|
|
|
|
323 |
},
|
324 |
-
"execution_count":
|
325 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
},
|
327 |
{
|
328 |
"cell_type": "markdown",
|
|
|
82 |
"mix_method = \"None\""
|
83 |
],
|
84 |
"metadata": {
|
85 |
+
"id": "Ch9puvwKH1s3",
|
86 |
+
"collapsed": true,
|
87 |
+
"colab": {
|
88 |
+
"base_uri": "https://localhost:8080/"
|
89 |
+
},
|
90 |
+
"outputId": "982a9210-a3fd-4d90-bef7-5aa6f5864797"
|
91 |
},
|
92 |
+
"execution_count": 2,
|
93 |
+
"outputs": [
|
94 |
+
{
|
95 |
+
"output_type": "stream",
|
96 |
+
"name": "stdout",
|
97 |
+
"text": [
|
98 |
+
"Cloning into 'sd_tokens'...\n",
|
99 |
+
"remote: Enumerating objects: 10, done.\u001b[K\n",
|
100 |
+
"remote: Counting objects: 100% (7/7), done.\u001b[K\n",
|
101 |
+
"remote: Compressing objects: 100% (7/7), done.\u001b[K\n",
|
102 |
+
"remote: Total 10 (delta 1), reused 0 (delta 0), pack-reused 3 (from 1)\u001b[K\n",
|
103 |
+
"Unpacking objects: 100% (10/10), 306.93 KiB | 4.72 MiB/s, done.\n",
|
104 |
+
"/content/sd_tokens\n"
|
105 |
+
]
|
106 |
+
}
|
107 |
+
]
|
108 |
},
|
109 |
{
|
110 |
"cell_type": "code",
|
|
|
125 |
"#You can leave the 'prompt' field empty to get a random value tensor. Since the tensor is random value, it will not correspond to any tensor in the vocab.json list , and this it will have no ID."
|
126 |
],
|
127 |
"metadata": {
|
128 |
+
"id": "RPdkYzT2_X85",
|
129 |
+
"colab": {
|
130 |
+
"base_uri": "https://localhost:8080/"
|
131 |
+
},
|
132 |
+
"outputId": "86f2f01e-6a04-4292-cee7-70fd8398e07f"
|
133 |
},
|
134 |
+
"execution_count": 3,
|
135 |
+
"outputs": [
|
136 |
+
{
|
137 |
+
"output_type": "stream",
|
138 |
+
"name": "stdout",
|
139 |
+
"text": [
|
140 |
+
"[49406, 8922, 49407]\n"
|
141 |
+
]
|
142 |
+
}
|
143 |
+
]
|
144 |
},
|
145 |
{
|
146 |
"cell_type": "code",
|
|
|
167 |
"metadata": {
|
168 |
"id": "YqdiF8DIz9Wu"
|
169 |
},
|
170 |
+
"execution_count": 4,
|
171 |
"outputs": []
|
172 |
},
|
173 |
{
|
|
|
220 |
"#OPTIONAL : Add/subtract + normalize above result with another token. Leave field empty to get a random value tensor"
|
221 |
],
|
222 |
"metadata": {
|
223 |
+
"id": "oXbNSRSKPgRr",
|
224 |
+
"collapsed": true,
|
225 |
+
"colab": {
|
226 |
+
"base_uri": "https://localhost:8080/"
|
227 |
+
},
|
228 |
+
"outputId": "76f8ec94-d29c-46d9-893b-49875f3a1949"
|
229 |
},
|
230 |
+
"execution_count": 5,
|
231 |
+
"outputs": [
|
232 |
+
{
|
233 |
+
"output_type": "stream",
|
234 |
+
"name": "stdout",
|
235 |
+
"text": [
|
236 |
+
"Tokenized prompt 'mix_with' tensor C is a random valued tensor with no ID\n",
|
237 |
+
"No operation\n"
|
238 |
+
]
|
239 |
+
}
|
240 |
+
]
|
241 |
},
|
242 |
{
|
243 |
"cell_type": "code",
|
|
|
275 |
"#Produce a list id IDs that are most similiar to the prompt ID at positiion 1 based on above result"
|
276 |
],
|
277 |
"metadata": {
|
278 |
+
"id": "juxsvco9B0iV",
|
279 |
+
"collapsed": true,
|
280 |
+
"colab": {
|
281 |
+
"base_uri": "https://localhost:8080/"
|
282 |
+
},
|
283 |
+
"outputId": "dc893bbf-e9cb-425c-95b8-ffafd3ab2fbc"
|
284 |
},
|
285 |
+
"execution_count": 6,
|
286 |
+
"outputs": [
|
287 |
+
{
|
288 |
+
"output_type": "stream",
|
289 |
+
"name": "stdout",
|
290 |
+
"text": [
|
291 |
+
"Calculated all cosine-similarities between the token banana</w> with Id_A = 8922 with the the rest of the 49407 tokens as a 1x49407 tensor\n"
|
292 |
+
]
|
293 |
+
}
|
294 |
+
]
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"cell_type": "markdown",
|
298 |
+
"source": [],
|
299 |
+
"metadata": {
|
300 |
+
"id": "cYYu5C5C6MHH"
|
301 |
+
}
|
302 |
},
|
303 |
{
|
304 |
"cell_type": "code",
|
|
|
325 |
],
|
326 |
"metadata": {
|
327 |
"id": "YIEmLAzbHeuo",
|
328 |
+
"collapsed": true,
|
329 |
+
"colab": {
|
330 |
+
"base_uri": "https://localhost:8080/"
|
331 |
+
},
|
332 |
+
"outputId": "4a2fa70f-16ff-4bba-fb01-d39ad697d4ff"
|
333 |
},
|
334 |
+
"execution_count": 7,
|
335 |
+
"outputs": [
|
336 |
+
{
|
337 |
+
"output_type": "stream",
|
338 |
+
"name": "stdout",
|
339 |
+
"text": [
|
340 |
+
"banana</w>\n",
|
341 |
+
"similiarity = 100.0 %\n",
|
342 |
+
"--------\n",
|
343 |
+
"bananas</w>\n",
|
344 |
+
"similiarity = 38.93 %\n",
|
345 |
+
"--------\n",
|
346 |
+
"banan\n",
|
347 |
+
"similiarity = 30.8 %\n",
|
348 |
+
"--------\n",
|
349 |
+
"ðŁįĮ</w>\n",
|
350 |
+
"similiarity = 27.12 %\n",
|
351 |
+
"--------\n",
|
352 |
+
"pineapple</w>\n",
|
353 |
+
"similiarity = 19.7 %\n",
|
354 |
+
"--------\n",
|
355 |
+
"chicken</w>\n",
|
356 |
+
"similiarity = 19.24 %\n",
|
357 |
+
"--------\n",
|
358 |
+
"potassium</w>\n",
|
359 |
+
"similiarity = 19.21 %\n",
|
360 |
+
"--------\n",
|
361 |
+
"sausage</w>\n",
|
362 |
+
"similiarity = 19.07 %\n",
|
363 |
+
"--------\n",
|
364 |
+
"lemon</w>\n",
|
365 |
+
"similiarity = 18.82 %\n",
|
366 |
+
"--------\n",
|
367 |
+
"orange</w>\n",
|
368 |
+
"similiarity = 18.42 %\n",
|
369 |
+
"--------\n",
|
370 |
+
"peanut</w>\n",
|
371 |
+
"similiarity = 17.84 %\n",
|
372 |
+
"--------\n",
|
373 |
+
"parachute</w>\n",
|
374 |
+
"similiarity = 17.19 %\n",
|
375 |
+
"--------\n",
|
376 |
+
"duck\n",
|
377 |
+
"similiarity = 16.8 %\n",
|
378 |
+
"--------\n",
|
379 |
+
"yellow</w>\n",
|
380 |
+
"similiarity = 16.21 %\n",
|
381 |
+
"--------\n",
|
382 |
+
"grape</w>\n",
|
383 |
+
"similiarity = 16.19 %\n",
|
384 |
+
"--------\n",
|
385 |
+
"kangaroo</w>\n",
|
386 |
+
"similiarity = 16.13 %\n",
|
387 |
+
"--------\n",
|
388 |
+
"apple</w>\n",
|
389 |
+
"similiarity = 16.13 %\n",
|
390 |
+
"--------\n",
|
391 |
+
"tangerine</w>\n",
|
392 |
+
"similiarity = 16.08 %\n",
|
393 |
+
"--------\n",
|
394 |
+
"giraffe</w>\n",
|
395 |
+
"similiarity = 16.04 %\n",
|
396 |
+
"--------\n",
|
397 |
+
"mango</w>\n",
|
398 |
+
"similiarity = 16.03 %\n",
|
399 |
+
"--------\n",
|
400 |
+
"rubber</w>\n",
|
401 |
+
"similiarity = 15.95 %\n",
|
402 |
+
"--------\n",
|
403 |
+
"bamboo</w>\n",
|
404 |
+
"similiarity = 15.88 %\n",
|
405 |
+
"--------\n",
|
406 |
+
"umbrella</w>\n",
|
407 |
+
"similiarity = 15.82 %\n",
|
408 |
+
"--------\n",
|
409 |
+
"nutella</w>\n",
|
410 |
+
"similiarity = 15.69 %\n",
|
411 |
+
"--------\n",
|
412 |
+
"ferrari</w>\n",
|
413 |
+
"similiarity = 15.69 %\n",
|
414 |
+
"--------\n",
|
415 |
+
"oranges</w>\n",
|
416 |
+
"similiarity = 15.65 %\n",
|
417 |
+
"--------\n",
|
418 |
+
"peanuts</w>\n",
|
419 |
+
"similiarity = 15.62 %\n",
|
420 |
+
"--------\n",
|
421 |
+
"ali</w>\n",
|
422 |
+
"similiarity = 15.49 %\n",
|
423 |
+
"--------\n",
|
424 |
+
"cucumber</w>\n",
|
425 |
+
"similiarity = 15.32 %\n",
|
426 |
+
"--------\n",
|
427 |
+
"potato</w>\n",
|
428 |
+
"similiarity = 15.22 %\n",
|
429 |
+
"--------\n",
|
430 |
+
"monkey</w>\n",
|
431 |
+
"similiarity = 15.2 %\n",
|
432 |
+
"--------\n",
|
433 |
+
"croissant</w>\n",
|
434 |
+
"similiarity = 15.18 %\n",
|
435 |
+
"--------\n",
|
436 |
+
"papaya</w>\n",
|
437 |
+
"similiarity = 15.17 %\n",
|
438 |
+
"--------\n",
|
439 |
+
"christmas</w>\n",
|
440 |
+
"similiarity = 15.12 %\n",
|
441 |
+
"--------\n",
|
442 |
+
"sandwich</w>\n",
|
443 |
+
"similiarity = 15.0 %\n",
|
444 |
+
"--------\n",
|
445 |
+
"rainbow</w>\n",
|
446 |
+
"similiarity = 14.98 %\n",
|
447 |
+
"--------\n",
|
448 |
+
"tomato</w>\n",
|
449 |
+
"similiarity = 14.96 %\n",
|
450 |
+
"--------\n",
|
451 |
+
"martini</w>\n",
|
452 |
+
"similiarity = 14.93 %\n",
|
453 |
+
"--------\n",
|
454 |
+
"cabaret</w>\n",
|
455 |
+
"similiarity = 14.83 %\n",
|
456 |
+
"--------\n",
|
457 |
+
"ginger</w>\n",
|
458 |
+
"similiarity = 14.82 %\n",
|
459 |
+
"--------\n",
|
460 |
+
"animal</w>\n",
|
461 |
+
"similiarity = 14.76 %\n",
|
462 |
+
"--------\n",
|
463 |
+
"vanilla</w>\n",
|
464 |
+
"similiarity = 14.73 %\n",
|
465 |
+
"--------\n",
|
466 |
+
"mustache</w>\n",
|
467 |
+
"similiarity = 14.64 %\n",
|
468 |
+
"--------\n",
|
469 |
+
"lime</w>\n",
|
470 |
+
"similiarity = 14.62 %\n",
|
471 |
+
"--------\n",
|
472 |
+
"sickle</w>\n",
|
473 |
+
"similiarity = 14.6 %\n",
|
474 |
+
"--------\n",
|
475 |
+
"vista</w>\n",
|
476 |
+
"similiarity = 14.53 %\n",
|
477 |
+
"--------\n",
|
478 |
+
"coconut</w>\n",
|
479 |
+
"similiarity = 14.52 %\n",
|
480 |
+
"--------\n",
|
481 |
+
"kara</w>\n",
|
482 |
+
"similiarity = 14.46 %\n",
|
483 |
+
"--------\n",
|
484 |
+
"alligator</w>\n",
|
485 |
+
"similiarity = 14.39 %\n",
|
486 |
+
"--------\n",
|
487 |
+
"blueberry</w>\n",
|
488 |
+
"similiarity = 14.34 %\n",
|
489 |
+
"--------\n",
|
490 |
+
"squirrel</w>\n",
|
491 |
+
"similiarity = 14.29 %\n",
|
492 |
+
"--------\n",
|
493 |
+
"atore</w>\n",
|
494 |
+
"similiarity = 14.19 %\n",
|
495 |
+
"--------\n",
|
496 |
+
"watermelon</w>\n",
|
497 |
+
"similiarity = 14.13 %\n",
|
498 |
+
"--------\n",
|
499 |
+
"nana</w>\n",
|
500 |
+
"similiarity = 14.09 %\n",
|
501 |
+
"--------\n",
|
502 |
+
"latex</w>\n",
|
503 |
+
"similiarity = 14.08 %\n",
|
504 |
+
"--------\n",
|
505 |
+
"agricultural</w>\n",
|
506 |
+
"similiarity = 14.02 %\n",
|
507 |
+
"--------\n",
|
508 |
+
"zucchini</w>\n",
|
509 |
+
"similiarity = 14.0 %\n",
|
510 |
+
"--------\n",
|
511 |
+
"saxophone</w>\n",
|
512 |
+
"similiarity = 13.93 %\n",
|
513 |
+
"--------\n",
|
514 |
+
"mozzarella</w>\n",
|
515 |
+
"similiarity = 13.91 %\n",
|
516 |
+
"--------\n",
|
517 |
+
"eggplant</w>\n",
|
518 |
+
"similiarity = 13.9 %\n",
|
519 |
+
"--------\n",
|
520 |
+
"pickle</w>\n",
|
521 |
+
"similiarity = 13.89 %\n",
|
522 |
+
"--------\n",
|
523 |
+
"tortilla</w>\n",
|
524 |
+
"similiarity = 13.88 %\n",
|
525 |
+
"--------\n",
|
526 |
+
"maniac</w>\n",
|
527 |
+
"similiarity = 13.84 %\n",
|
528 |
+
"--------\n",
|
529 |
+
"milk</w>\n",
|
530 |
+
"similiarity = 13.83 %\n",
|
531 |
+
"--------\n",
|
532 |
+
"cellphone</w>\n",
|
533 |
+
"similiarity = 13.78 %\n",
|
534 |
+
"--------\n",
|
535 |
+
"duck</w>\n",
|
536 |
+
"similiarity = 13.73 %\n",
|
537 |
+
"--------\n",
|
538 |
+
"umbrel\n",
|
539 |
+
"similiarity = 13.71 %\n",
|
540 |
+
"--------\n",
|
541 |
+
"fanny</w>\n",
|
542 |
+
"similiarity = 13.69 %\n",
|
543 |
+
"--------\n",
|
544 |
+
"twister</w>\n",
|
545 |
+
"similiarity = 13.67 %\n",
|
546 |
+
"--------\n",
|
547 |
+
"moustache</w>\n",
|
548 |
+
"similiarity = 13.66 %\n",
|
549 |
+
"--------\n",
|
550 |
+
"manafort</w>\n",
|
551 |
+
"similiarity = 13.66 %\n",
|
552 |
+
"--------\n",
|
553 |
+
"grapefruit</w>\n",
|
554 |
+
"similiarity = 13.6 %\n",
|
555 |
+
"--------\n",
|
556 |
+
"broom</w>\n",
|
557 |
+
"similiarity = 13.59 %\n",
|
558 |
+
"--------\n",
|
559 |
+
"scorpion</w>\n",
|
560 |
+
"similiarity = 13.59 %\n",
|
561 |
+
"--------\n",
|
562 |
+
"fruit\n",
|
563 |
+
"similiarity = 13.57 %\n",
|
564 |
+
"--------\n",
|
565 |
+
"agan\n",
|
566 |
+
"similiarity = 13.53 %\n",
|
567 |
+
"--------\n",
|
568 |
+
"sunflower</w>\n",
|
569 |
+
"similiarity = 13.49 %\n",
|
570 |
+
"--------\n",
|
571 |
+
"banc\n",
|
572 |
+
"similiarity = 13.46 %\n",
|
573 |
+
"--------\n",
|
574 |
+
"literature</w>\n",
|
575 |
+
"similiarity = 13.45 %\n",
|
576 |
+
"--------\n",
|
577 |
+
"pelican</w>\n",
|
578 |
+
"similiarity = 13.43 %\n",
|
579 |
+
"--------\n",
|
580 |
+
"breakfast</w>\n",
|
581 |
+
"similiarity = 13.42 %\n",
|
582 |
+
"--------\n",
|
583 |
+
"pear</w>\n",
|
584 |
+
"similiarity = 13.42 %\n",
|
585 |
+
"--------\n",
|
586 |
+
"orange\n",
|
587 |
+
"similiarity = 13.4 %\n",
|
588 |
+
"--------\n",
|
589 |
+
"monet</w>\n",
|
590 |
+
"similiarity = 13.4 %\n",
|
591 |
+
"--------\n",
|
592 |
+
"snake</w>\n",
|
593 |
+
"similiarity = 13.32 %\n",
|
594 |
+
"--------\n",
|
595 |
+
"vampire</w>\n",
|
596 |
+
"similiarity = 13.32 %\n",
|
597 |
+
"--------\n",
|
598 |
+
"cinnamon</w>\n",
|
599 |
+
"similiarity = 13.3 %\n",
|
600 |
+
"--------\n",
|
601 |
+
"strawberries</w>\n",
|
602 |
+
"similiarity = 13.29 %\n",
|
603 |
+
"--------\n",
|
604 |
+
"butternut</w>\n",
|
605 |
+
"similiarity = 13.22 %\n",
|
606 |
+
"--------\n",
|
607 |
+
"sausages</w>\n",
|
608 |
+
"similiarity = 13.22 %\n",
|
609 |
+
"--------\n",
|
610 |
+
"iphone</w>\n",
|
611 |
+
"similiarity = 13.21 %\n",
|
612 |
+
"--------\n",
|
613 |
+
"egg\n",
|
614 |
+
"similiarity = 13.2 %\n",
|
615 |
+
"--------\n",
|
616 |
+
"capu\n",
|
617 |
+
"similiarity = 13.2 %\n",
|
618 |
+
"--------\n",
|
619 |
+
"mannequin</w>\n",
|
620 |
+
"similiarity = 13.19 %\n",
|
621 |
+
"--------\n",
|
622 |
+
"cucumbers</w>\n",
|
623 |
+
"similiarity = 13.16 %\n",
|
624 |
+
"--------\n",
|
625 |
+
"champagne</w>\n",
|
626 |
+
"similiarity = 13.15 %\n",
|
627 |
+
"--------\n",
|
628 |
+
"triangle</w>\n",
|
629 |
+
"similiarity = 13.14 %\n",
|
630 |
+
"--------\n",
|
631 |
+
"apples</w>\n",
|
632 |
+
"similiarity = 13.09 %\n",
|
633 |
+
"--------\n",
|
634 |
+
"dynamite</w>\n",
|
635 |
+
"similiarity = 13.08 %\n",
|
636 |
+
"--------\n",
|
637 |
+
"chocolate</w>\n",
|
638 |
+
"similiarity = 13.08 %\n",
|
639 |
+
"--------\n"
|
640 |
+
]
|
641 |
+
}
|
642 |
+
]
|
643 |
},
|
644 |
{
|
645 |
"cell_type": "code",
|
|
|
656 |
"#Valid ID ranges for id_for_token_A / id_for_token_B are between 0 and 49407"
|
657 |
],
|
658 |
"metadata": {
|
659 |
+
"id": "MwmOdC9cNZty",
|
660 |
+
"collapsed": true,
|
661 |
+
"colab": {
|
662 |
+
"base_uri": "https://localhost:8080/"
|
663 |
+
},
|
664 |
+
"outputId": "0dd984d0-e253-4981-d72f-40aa83d57d8b"
|
665 |
},
|
666 |
+
"execution_count": 8,
|
667 |
+
"outputs": [
|
668 |
+
{
|
669 |
+
"output_type": "stream",
|
670 |
+
"name": "stdout",
|
671 |
+
"text": [
|
672 |
+
"The similarity between tokens A and B is 3.671 %\n"
|
673 |
+
]
|
674 |
+
}
|
675 |
+
]
|
676 |
},
|
677 |
{
|
678 |
"cell_type": "code",
|
|
|
681 |
"\n",
|
682 |
"prompt_A = \"\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
683 |
"prompt_B = \"\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
684 |
+
"use_token_padding = True # @param {type:\"boolean\"}\n",
|
685 |
"\n",
|
686 |
"from transformers import CLIPProcessor, CLIPModel\n",
|
687 |
"\n",
|
|
|
696 |
"ids_B = processor.tokenizer(text=prompt_B, padding=use_token_padding, return_tensors=\"pt\")\n",
|
697 |
"text_encoding_B = model.get_text_features(**ids_B)\n",
|
698 |
"\n",
|
699 |
+
"similarity_str = 'The similarity between the text_encoding for A:\"' + prompt_A + '\" and B: \"' + prompt_B +'\" is ' + token_similarity(text_encoding_A[0] , text_encoding_B[0])\n",
|
700 |
"\n",
|
701 |
"\n",
|
702 |
"print(similarity_str)\n",
|
|
|
708 |
"\n"
|
709 |
],
|
710 |
"metadata": {
|
711 |
+
"id": "QQOjh5BvnG8M",
|
712 |
+
"collapsed": true,
|
713 |
+
"colab": {
|
714 |
+
"base_uri": "https://localhost:8080/"
|
715 |
+
},
|
716 |
+
"outputId": "8bd6eb94-c5a7-47e6-913b-346941b144a6"
|
717 |
},
|
718 |
+
"execution_count": 11,
|
719 |
+
"outputs": [
|
720 |
+
{
|
721 |
+
"output_type": "stream",
|
722 |
+
"name": "stdout",
|
723 |
+
"text": [
|
724 |
+
"The similarity between the text_encoding for A:\"one ripe banana\" and B: \"a long yellow fruit\" is 83.696 %\n"
|
725 |
+
]
|
726 |
+
}
|
727 |
+
]
|
728 |
},
|
729 |
{
|
730 |
"cell_type": "markdown",
|