Upload sd_token_similarity_calculator.ipynb
Browse files
sd_token_similarity_calculator.ipynb
CHANGED
@@ -274,19 +274,42 @@
|
|
274 |
"id": "IUCuV9RtQpBn"
|
275 |
}
|
276 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
{
|
278 |
"cell_type": "code",
|
279 |
"source": [
|
280 |
"# @title 🪐🖼️ -> 📝 Token-Sampling Image interrogator\n",
|
281 |
-
"\n",
|
|
|
|
|
|
|
282 |
"# @markdown # What do you want to to mimic?\n",
|
283 |
-
"use = '
|
284 |
"# @markdown --------------------------\n",
|
285 |
"use_token_padding = True # param {type:\"boolean\"} <---- Enabled by default\n",
|
286 |
"prompt = \"photo of a banana\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
287 |
-
"
|
288 |
"prompt_A = prompt\n",
|
289 |
-
"
|
290 |
"from google.colab import files\n",
|
291 |
"def upload_files():\n",
|
292 |
" from google.colab import files\n",
|
@@ -297,17 +320,12 @@
|
|
297 |
"#Get image\n",
|
298 |
"# You can use \"http://images.cocodataset.org/val2017/000000039769.jpg\" for testing\n",
|
299 |
"image_url = \"http://images.cocodataset.org/val2017/000000039769.jpg\" # @param {\"type\":\"string\",\"placeholder\":\"leave empty for local upload (scroll down to see it)\"}\n",
|
300 |
-
"\n",
|
301 |
-
"\n",
|
302 |
"colab_image_path = \"\" # @param {\"type\":\"string\",\"placeholder\": \"eval. as '/content/sd_tokens/' + **your input**\"}\n",
|
303 |
-
"\n",
|
304 |
"# @markdown --------------------------\n",
|
305 |
"from PIL import Image\n",
|
306 |
"import requests\n",
|
307 |
"image_A = \"\"\n",
|
308 |
-
"\n",
|
309 |
"#----#\n",
|
310 |
-
"\n",
|
311 |
"if(use == '🖼️image_encoding from image'):\n",
|
312 |
" if image_url == \"\":\n",
|
313 |
" import cv2\n",
|
@@ -323,14 +341,12 @@
|
|
323 |
" else:\n",
|
324 |
" image_A = Image.open(requests.get(image_url, stream=True).raw)\n",
|
325 |
"#------#\n",
|
326 |
-
"\n",
|
327 |
"from transformers import AutoTokenizer\n",
|
328 |
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
329 |
"from transformers import CLIPProcessor, CLIPModel\n",
|
330 |
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
331 |
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
332 |
-
"
|
333 |
-
"\n",
|
334 |
"if(use == '🖼️image_encoding from image'):\n",
|
335 |
" # Get image features\n",
|
336 |
" inputs = processor(images=image_A, return_tensors=\"pt\")\n",
|
@@ -338,34 +354,27 @@
|
|
338 |
" image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)\n",
|
339 |
" name_A = \"the image\"\n",
|
340 |
"#-----#\n",
|
341 |
-
"\n",
|
342 |
-
"\n",
|
343 |
"if(use == '📝text_encoding from prompt'):\n",
|
344 |
" # Get text features\n",
|
345 |
" inputs = tokenizer(text = prompt, padding=True, return_tensors=\"pt\")\n",
|
346 |
" text_features_A = model.get_text_features(**inputs)\n",
|
347 |
" name_A = prompt\n",
|
348 |
"#-----#\n",
|
349 |
-
"\n",
|
350 |
-
"\n",
|
351 |
"# @markdown # The output...\n",
|
352 |
"must_start_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
353 |
"must_contain = \"banana \" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
354 |
"must_end_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
355 |
"token_B = must_contain\n",
|
356 |
-
"\n",
|
357 |
"# @markdown -----\n",
|
358 |
-
"\n",
|
359 |
"# @markdown # Use a range of tokens from the vocab.json (slow method)\n",
|
360 |
-
"
|
|
|
|
|
361 |
"search_range = 100 # @param {type:\"slider\", min:100, max: 2000, step:0}\n",
|
362 |
"restrictions = 'None' # @param [\"None\", \"Suffix only\", \"Prefix only\"]\n",
|
363 |
-
"\n",
|
364 |
"#markdown Limit char size of included token <----- Disabled\n",
|
365 |
"min_char_size = 0 #param {type:\"slider\", min:0, max: 20, step:1}\n",
|
366 |
"char_range = 50 #param {type:\"slider\", min:0, max: 20, step:1}\n",
|
367 |
-
"\n",
|
368 |
-
"\n",
|
369 |
"# markdown # ...or paste prompt items\n",
|
370 |
"# markdown Format must be {item1|item2|...}. You can aquire prompt items using the Randomizer in the fusion gen: https://perchance.org/fusion-ai-image-generator\n",
|
371 |
"_enable = False # param {\"type\":\"boolean\"}\n",
|
@@ -373,26 +382,21 @@
|
|
373 |
"#-----#\n",
|
374 |
"name_B = must_contain\n",
|
375 |
"#-----#\n",
|
376 |
-
"\n",
|
377 |
"START = start_search_at_ID\n",
|
378 |
"RANGE = min(search_range , 49407 - start_search_at_ID)\n",
|
379 |
-
"
|
380 |
"dots = torch.zeros(RANGE)\n",
|
381 |
"is_BC = torch.zeros(RANGE)\n",
|
382 |
-
"\n",
|
383 |
"import re\n",
|
384 |
-
"
|
385 |
"for index in range(RANGE):\n",
|
386 |
" id_C = START + index\n",
|
387 |
-
" name_C =
|
388 |
" is_Prefix = 0\n",
|
389 |
-
"\n",
|
390 |
-
"\n",
|
391 |
" #Skip if non-AZ characters are found\n",
|
392 |
" if re.search(\"\\W/g\" , name_C.replace('</w>', '')):\n",
|
393 |
" continue\n",
|
394 |
-
"
|
395 |
-
"\n",
|
396 |
" # Decide if we should process prefix/suffix tokens\n",
|
397 |
" if name_C.find('</w>')<=-1:\n",
|
398 |
" is_Prefix = 1\n",
|
@@ -402,7 +406,6 @@
|
|
402 |
" if restrictions == \"Prefix only\":\n",
|
403 |
" continue\n",
|
404 |
" #-----#\n",
|
405 |
-
"\n",
|
406 |
" # Decide if char-size is within range\n",
|
407 |
" if len(name_C) < min_char_size:\n",
|
408 |
" continue\n",
|
@@ -413,7 +416,6 @@
|
|
413 |
" if is_Prefix>0:\n",
|
414 |
" name_CB = must_start_with + ' ' + name_C.strip() + '-' + name_B.strip() + ' ' + must_end_with\n",
|
415 |
" #-----#\n",
|
416 |
-
"\n",
|
417 |
" if(use == '🖼️image_encoding from image'):\n",
|
418 |
" ids_CB = processor.tokenizer(text=name_CB, padding=use_token_padding, return_tensors=\"pt\")\n",
|
419 |
" text_features = model.get_text_features(**ids_CB)\n",
|
@@ -422,16 +424,12 @@
|
|
422 |
" torch.matmul(text_features, image_features.t()) * logit_scale\n",
|
423 |
" sim_CB = torch.nn.functional.cosine_similarity(text_features, image_features) * logit_scale\n",
|
424 |
" #-----#\n",
|
425 |
-
"\n",
|
426 |
" if(use == '📝text_encoding from prompt'):\n",
|
427 |
" ids_CB = processor.tokenizer(text=name_CB, padding=use_token_padding, return_tensors=\"pt\")\n",
|
428 |
" text_features = model.get_text_features(**ids_CB)\n",
|
429 |
" text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
430 |
" sim_CB = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n",
|
431 |
" #-----#\n",
|
432 |
-
"\n",
|
433 |
-
"\n",
|
434 |
-
"\n",
|
435 |
" #-----#\n",
|
436 |
" if restrictions == \"Prefix only\":\n",
|
437 |
" result = sim_CB\n",
|
@@ -439,7 +437,6 @@
|
|
439 |
" dots[index] = result\n",
|
440 |
" continue\n",
|
441 |
" #-----#\n",
|
442 |
-
"\n",
|
443 |
" if(use == '🖼️image_encoding from image'):\n",
|
444 |
" name_BC = must_start_with + name_B + name_C + must_end_with\n",
|
445 |
" ids_BC = processor.tokenizer(text=name_BC, padding=use_token_padding, return_tensors=\"pt\")\n",
|
@@ -449,7 +446,6 @@
|
|
449 |
" torch.matmul(text_features, image_features.t()) * logit_scale\n",
|
450 |
" sim_BC = torch.nn.functional.cosine_similarity(text_features, image_features) * logit_scale\n",
|
451 |
" #-----#\n",
|
452 |
-
"\n",
|
453 |
" if(use == '📝text_encoding from prompt'):\n",
|
454 |
" name_BC = must_start_with + name_B + name_C + must_end_with\n",
|
455 |
" ids_BC = processor.tokenizer(text=name_BC, padding=use_token_padding, return_tensors=\"pt\")\n",
|
@@ -457,20 +453,16 @@
|
|
457 |
" text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
458 |
" sim_BC = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n",
|
459 |
" #-----#\n",
|
460 |
-
"\n",
|
461 |
" result = sim_CB\n",
|
462 |
" if(sim_BC > sim_CB):\n",
|
463 |
" is_BC[index] = 1\n",
|
464 |
" result = sim_BC\n",
|
465 |
-
"
|
466 |
" #result = absolute_value(result.item())\n",
|
467 |
" result = result.item()\n",
|
468 |
" dots[index] = result\n",
|
469 |
"#----#\n",
|
470 |
-
"\n",
|
471 |
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
472 |
-
"\n",
|
473 |
-
"\n",
|
474 |
"# @markdown ----------\n",
|
475 |
"# @markdown # Print options\n",
|
476 |
"list_size = 100 # @param {type:'number'}\n",
|
@@ -478,11 +470,10 @@
|
|
478 |
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
479 |
"print_Name = True # @param {type:\"boolean\"}\n",
|
480 |
"print_Divider = True # @param {type:\"boolean\"}\n",
|
481 |
-
"
|
482 |
-
"\n",
|
483 |
"if (print_Divider):\n",
|
484 |
" print('//---//')\n",
|
485 |
-
"
|
486 |
"print('')\n",
|
487 |
"print(f'These token pairings within the range ID = {START} to ID = {START + RANGE} most closely match the text_encoding for {prompt_A} : ')\n",
|
488 |
"print('')\n",
|
@@ -499,7 +490,7 @@
|
|
499 |
"#----#\n",
|
500 |
"for index in range(min(list_size,RANGE)):\n",
|
501 |
" id = START + indices[index].item()\n",
|
502 |
-
" name =
|
503 |
" #-----#\n",
|
504 |
" if (name.find('</w>')<=-1):\n",
|
505 |
" name = name + '-'\n",
|
@@ -511,7 +502,7 @@
|
|
511 |
" aheads = aheads + name + \"|\"\n",
|
512 |
" #----#\n",
|
513 |
" sim = sorted[index].item()\n",
|
514 |
-
"
|
515 |
" if(is_BC[index]>0):\n",
|
516 |
" if sim>max_sim_ahead:\n",
|
517 |
" max_sim_ahead = sim\n",
|
@@ -520,7 +511,6 @@
|
|
520 |
" if sim>max_sim_trail:\n",
|
521 |
" max_sim_trail = sim\n",
|
522 |
" max_name_trail = name\n",
|
523 |
-
"\n",
|
524 |
"#------#\n",
|
525 |
"trails = (trails + \"&&&&\").replace(\"|&&&&\", \"}\").replace(\"</w>\", \" \").replace(\"{&&&&\", \"\")\n",
|
526 |
"aheads = (aheads + \"&&&&\").replace(\"|&&&&\", \"}\").replace(\"</w>\", \" \").replace(\"{&&&&\", \"\")\n",
|
@@ -537,10 +527,9 @@
|
|
537 |
"#-----#\n",
|
538 |
"#STEP 2\n",
|
539 |
"import random\n",
|
540 |
-
"\n",
|
541 |
"names = {}\n",
|
542 |
-
"\n",
|
543 |
-
"
|
544 |
"dots = torch.zeros(NUM_PERMUTATIONS)\n",
|
545 |
"for index in range(NUM_PERMUTATIONS):\n",
|
546 |
" name = must_start_with\n",
|
@@ -551,7 +540,7 @@
|
|
551 |
" name = name + must_end_with\n",
|
552 |
" #----#\n",
|
553 |
" ids = processor.tokenizer(text=name, padding=use_token_padding, return_tensors=\"pt\")\n",
|
554 |
-
"
|
555 |
" if(use == '🖼️image_encoding from image'):\n",
|
556 |
" text_features = model.get_text_features(**ids)\n",
|
557 |
" text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
@@ -559,26 +548,22 @@
|
|
559 |
" torch.matmul(text_features, image_features.t()) * logit_scale\n",
|
560 |
" sim = torch.nn.functional.cosine_similarity(text_features, image_features) * logit_scale\n",
|
561 |
" #-----#\n",
|
562 |
-
"\n",
|
563 |
" if(use == '📝text_encoding from prompt'):\n",
|
564 |
" text_features = model.get_text_features(**ids)\n",
|
565 |
" text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
566 |
" sim = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n",
|
567 |
" #-----#\n",
|
568 |
-
"\n",
|
569 |
-
"\n",
|
570 |
" dots[index] = sim\n",
|
571 |
" names[index] = name\n",
|
572 |
-
"\n",
|
573 |
-
"\n",
|
574 |
"#------#\n",
|
575 |
-
"\n",
|
576 |
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
577 |
-
"
|
578 |
"for index in range(NUM_PERMUTATIONS):\n",
|
579 |
" print(names[indices[index].item()])\n",
|
580 |
" print(f'similiarity = {round(sorted[index].item(),2)} %')\n",
|
581 |
-
" print('------')"
|
|
|
|
|
582 |
],
|
583 |
"metadata": {
|
584 |
"collapsed": true,
|
@@ -620,7 +605,8 @@
|
|
620 |
],
|
621 |
"metadata": {
|
622 |
"id": "QQOjh5BvnG8M",
|
623 |
-
"collapsed": true
|
|
|
624 |
},
|
625 |
"execution_count": null,
|
626 |
"outputs": []
|
|
|
274 |
"id": "IUCuV9RtQpBn"
|
275 |
}
|
276 |
},
|
277 |
+
{
|
278 |
+
"cell_type": "code",
|
279 |
+
"source": [
|
280 |
+
"# @title ⚡💾 Save results as .db file\n",
|
281 |
+
"import shelve\n",
|
282 |
+
"d = shelve.open('tokens_most_similiar_to_' + name_A.replace('</w>','').strip())\n",
|
283 |
+
"#NUM TOKENS == 49407\n",
|
284 |
+
"for index in range(NUM_TOKENS):\n",
|
285 |
+
" #print(d[f'{index}']) #<-----Use this to read values from the .db file\n",
|
286 |
+
" d[f'{index}']= vocab[indices[index].item()] #<---- write values to .db file\n",
|
287 |
+
"#----#\n",
|
288 |
+
"d.close() #close the file\n",
|
289 |
+
"# See this link for additional stuff to do with shelve: https://docs.python.org/3/library/shelve.html"
|
290 |
+
],
|
291 |
+
"metadata": {
|
292 |
+
"id": "qj888fPEbX8K"
|
293 |
+
},
|
294 |
+
"execution_count": 15,
|
295 |
+
"outputs": []
|
296 |
+
},
|
297 |
{
|
298 |
"cell_type": "code",
|
299 |
"source": [
|
300 |
"# @title 🪐🖼️ -> 📝 Token-Sampling Image interrogator\n",
|
301 |
+
"VOCAB_FILENAME = 'tokens_most_similiar_to_girl' #This vocab has been ordered where lowest index has the highest similarity to the reference vector \"girl</w>\". Feel free to create your own .db around a target token in above cells.\n",
|
302 |
+
"#-----#\n",
|
303 |
+
"import shelve\n",
|
304 |
+
"db_vocab = shelve.open(VOCAB_FILENAME)\n",
|
305 |
"# @markdown # What do you want to to mimic?\n",
|
306 |
+
"use = '📝text_encoding from prompt' # @param ['📝text_encoding from prompt', '🖼️image_encoding from image']\n",
|
307 |
"# @markdown --------------------------\n",
|
308 |
"use_token_padding = True # param {type:\"boolean\"} <---- Enabled by default\n",
|
309 |
"prompt = \"photo of a banana\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
310 |
+
"#-----#\n",
|
311 |
"prompt_A = prompt\n",
|
312 |
+
"#-----#\n",
|
313 |
"from google.colab import files\n",
|
314 |
"def upload_files():\n",
|
315 |
" from google.colab import files\n",
|
|
|
320 |
"#Get image\n",
|
321 |
"# You can use \"http://images.cocodataset.org/val2017/000000039769.jpg\" for testing\n",
|
322 |
"image_url = \"http://images.cocodataset.org/val2017/000000039769.jpg\" # @param {\"type\":\"string\",\"placeholder\":\"leave empty for local upload (scroll down to see it)\"}\n",
|
|
|
|
|
323 |
"colab_image_path = \"\" # @param {\"type\":\"string\",\"placeholder\": \"eval. as '/content/sd_tokens/' + **your input**\"}\n",
|
|
|
324 |
"# @markdown --------------------------\n",
|
325 |
"from PIL import Image\n",
|
326 |
"import requests\n",
|
327 |
"image_A = \"\"\n",
|
|
|
328 |
"#----#\n",
|
|
|
329 |
"if(use == '🖼️image_encoding from image'):\n",
|
330 |
" if image_url == \"\":\n",
|
331 |
" import cv2\n",
|
|
|
341 |
" else:\n",
|
342 |
" image_A = Image.open(requests.get(image_url, stream=True).raw)\n",
|
343 |
"#------#\n",
|
|
|
344 |
"from transformers import AutoTokenizer\n",
|
345 |
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
346 |
"from transformers import CLIPProcessor, CLIPModel\n",
|
347 |
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
348 |
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
349 |
+
"#-----#\n",
|
|
|
350 |
"if(use == '🖼️image_encoding from image'):\n",
|
351 |
" # Get image features\n",
|
352 |
" inputs = processor(images=image_A, return_tensors=\"pt\")\n",
|
|
|
354 |
" image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)\n",
|
355 |
" name_A = \"the image\"\n",
|
356 |
"#-----#\n",
|
|
|
|
|
357 |
"if(use == '📝text_encoding from prompt'):\n",
|
358 |
" # Get text features\n",
|
359 |
" inputs = tokenizer(text = prompt, padding=True, return_tensors=\"pt\")\n",
|
360 |
" text_features_A = model.get_text_features(**inputs)\n",
|
361 |
" name_A = prompt\n",
|
362 |
"#-----#\n",
|
|
|
|
|
363 |
"# @markdown # The output...\n",
|
364 |
"must_start_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
365 |
"must_contain = \"banana \" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
366 |
"must_end_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n",
|
367 |
"token_B = must_contain\n",
|
|
|
368 |
"# @markdown -----\n",
|
|
|
369 |
"# @markdown # Use a range of tokens from the vocab.json (slow method)\n",
|
370 |
+
"start_search_at_index = 1700 # @param {type:\"slider\", min:0, max: 49407, step:100}\n",
|
371 |
+
"# @markdown The lower the start_index, the more similiar the sampled tokens will be to the reference token \"girl\\</w>\"\n",
|
372 |
+
"start_search_at_ID = start_search_at_index\n",
|
373 |
"search_range = 100 # @param {type:\"slider\", min:100, max: 2000, step:0}\n",
|
374 |
"restrictions = 'None' # @param [\"None\", \"Suffix only\", \"Prefix only\"]\n",
|
|
|
375 |
"#markdown Limit char size of included token <----- Disabled\n",
|
376 |
"min_char_size = 0 #param {type:\"slider\", min:0, max: 20, step:1}\n",
|
377 |
"char_range = 50 #param {type:\"slider\", min:0, max: 20, step:1}\n",
|
|
|
|
|
378 |
"# markdown # ...or paste prompt items\n",
|
379 |
"# markdown Format must be {item1|item2|...}. You can aquire prompt items using the Randomizer in the fusion gen: https://perchance.org/fusion-ai-image-generator\n",
|
380 |
"_enable = False # param {\"type\":\"boolean\"}\n",
|
|
|
382 |
"#-----#\n",
|
383 |
"name_B = must_contain\n",
|
384 |
"#-----#\n",
|
|
|
385 |
"START = start_search_at_ID\n",
|
386 |
"RANGE = min(search_range , 49407 - start_search_at_ID)\n",
|
387 |
+
"#-----#\n",
|
388 |
"dots = torch.zeros(RANGE)\n",
|
389 |
"is_BC = torch.zeros(RANGE)\n",
|
|
|
390 |
"import re\n",
|
391 |
+
"#-----#\n",
|
392 |
"for index in range(RANGE):\n",
|
393 |
" id_C = START + index\n",
|
394 |
+
" name_C = db_vocab[f'{id_C}']\n",
|
395 |
" is_Prefix = 0\n",
|
|
|
|
|
396 |
" #Skip if non-AZ characters are found\n",
|
397 |
" if re.search(\"\\W/g\" , name_C.replace('</w>', '')):\n",
|
398 |
" continue\n",
|
399 |
+
" #-----#\n",
|
|
|
400 |
" # Decide if we should process prefix/suffix tokens\n",
|
401 |
" if name_C.find('</w>')<=-1:\n",
|
402 |
" is_Prefix = 1\n",
|
|
|
406 |
" if restrictions == \"Prefix only\":\n",
|
407 |
" continue\n",
|
408 |
" #-----#\n",
|
|
|
409 |
" # Decide if char-size is within range\n",
|
410 |
" if len(name_C) < min_char_size:\n",
|
411 |
" continue\n",
|
|
|
416 |
" if is_Prefix>0:\n",
|
417 |
" name_CB = must_start_with + ' ' + name_C.strip() + '-' + name_B.strip() + ' ' + must_end_with\n",
|
418 |
" #-----#\n",
|
|
|
419 |
" if(use == '🖼️image_encoding from image'):\n",
|
420 |
" ids_CB = processor.tokenizer(text=name_CB, padding=use_token_padding, return_tensors=\"pt\")\n",
|
421 |
" text_features = model.get_text_features(**ids_CB)\n",
|
|
|
424 |
" torch.matmul(text_features, image_features.t()) * logit_scale\n",
|
425 |
" sim_CB = torch.nn.functional.cosine_similarity(text_features, image_features) * logit_scale\n",
|
426 |
" #-----#\n",
|
|
|
427 |
" if(use == '📝text_encoding from prompt'):\n",
|
428 |
" ids_CB = processor.tokenizer(text=name_CB, padding=use_token_padding, return_tensors=\"pt\")\n",
|
429 |
" text_features = model.get_text_features(**ids_CB)\n",
|
430 |
" text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
431 |
" sim_CB = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n",
|
432 |
" #-----#\n",
|
|
|
|
|
|
|
433 |
" #-----#\n",
|
434 |
" if restrictions == \"Prefix only\":\n",
|
435 |
" result = sim_CB\n",
|
|
|
437 |
" dots[index] = result\n",
|
438 |
" continue\n",
|
439 |
" #-----#\n",
|
|
|
440 |
" if(use == '🖼️image_encoding from image'):\n",
|
441 |
" name_BC = must_start_with + name_B + name_C + must_end_with\n",
|
442 |
" ids_BC = processor.tokenizer(text=name_BC, padding=use_token_padding, return_tensors=\"pt\")\n",
|
|
|
446 |
" torch.matmul(text_features, image_features.t()) * logit_scale\n",
|
447 |
" sim_BC = torch.nn.functional.cosine_similarity(text_features, image_features) * logit_scale\n",
|
448 |
" #-----#\n",
|
|
|
449 |
" if(use == '📝text_encoding from prompt'):\n",
|
450 |
" name_BC = must_start_with + name_B + name_C + must_end_with\n",
|
451 |
" ids_BC = processor.tokenizer(text=name_BC, padding=use_token_padding, return_tensors=\"pt\")\n",
|
|
|
453 |
" text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
454 |
" sim_BC = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n",
|
455 |
" #-----#\n",
|
|
|
456 |
" result = sim_CB\n",
|
457 |
" if(sim_BC > sim_CB):\n",
|
458 |
" is_BC[index] = 1\n",
|
459 |
" result = sim_BC\n",
|
460 |
+
" #-----#\n",
|
461 |
" #result = absolute_value(result.item())\n",
|
462 |
" result = result.item()\n",
|
463 |
" dots[index] = result\n",
|
464 |
"#----#\n",
|
|
|
465 |
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
|
|
|
|
466 |
"# @markdown ----------\n",
|
467 |
"# @markdown # Print options\n",
|
468 |
"list_size = 100 # @param {type:'number'}\n",
|
|
|
470 |
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
471 |
"print_Name = True # @param {type:\"boolean\"}\n",
|
472 |
"print_Divider = True # @param {type:\"boolean\"}\n",
|
473 |
+
"#----#\n",
|
|
|
474 |
"if (print_Divider):\n",
|
475 |
" print('//---//')\n",
|
476 |
+
"#----#\n",
|
477 |
"print('')\n",
|
478 |
"print(f'These token pairings within the range ID = {START} to ID = {START + RANGE} most closely match the text_encoding for {prompt_A} : ')\n",
|
479 |
"print('')\n",
|
|
|
490 |
"#----#\n",
|
491 |
"for index in range(min(list_size,RANGE)):\n",
|
492 |
" id = START + indices[index].item()\n",
|
493 |
+
" name = db_vocab[f'{id}']\n",
|
494 |
" #-----#\n",
|
495 |
" if (name.find('</w>')<=-1):\n",
|
496 |
" name = name + '-'\n",
|
|
|
502 |
" aheads = aheads + name + \"|\"\n",
|
503 |
" #----#\n",
|
504 |
" sim = sorted[index].item()\n",
|
505 |
+
" #----#\n",
|
506 |
" if(is_BC[index]>0):\n",
|
507 |
" if sim>max_sim_ahead:\n",
|
508 |
" max_sim_ahead = sim\n",
|
|
|
511 |
" if sim>max_sim_trail:\n",
|
512 |
" max_sim_trail = sim\n",
|
513 |
" max_name_trail = name\n",
|
|
|
514 |
"#------#\n",
|
515 |
"trails = (trails + \"&&&&\").replace(\"|&&&&\", \"}\").replace(\"</w>\", \" \").replace(\"{&&&&\", \"\")\n",
|
516 |
"aheads = (aheads + \"&&&&\").replace(\"|&&&&\", \"}\").replace(\"</w>\", \" \").replace(\"{&&&&\", \"\")\n",
|
|
|
527 |
"#-----#\n",
|
528 |
"#STEP 2\n",
|
529 |
"import random\n",
|
|
|
530 |
"names = {}\n",
|
531 |
+
"NUM_PERMUTATIONS = 4\n",
|
532 |
+
"#-----#\n",
|
533 |
"dots = torch.zeros(NUM_PERMUTATIONS)\n",
|
534 |
"for index in range(NUM_PERMUTATIONS):\n",
|
535 |
" name = must_start_with\n",
|
|
|
540 |
" name = name + must_end_with\n",
|
541 |
" #----#\n",
|
542 |
" ids = processor.tokenizer(text=name, padding=use_token_padding, return_tensors=\"pt\")\n",
|
543 |
+
" #----#\n",
|
544 |
" if(use == '🖼️image_encoding from image'):\n",
|
545 |
" text_features = model.get_text_features(**ids)\n",
|
546 |
" text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
|
|
548 |
" torch.matmul(text_features, image_features.t()) * logit_scale\n",
|
549 |
" sim = torch.nn.functional.cosine_similarity(text_features, image_features) * logit_scale\n",
|
550 |
" #-----#\n",
|
|
|
551 |
" if(use == '📝text_encoding from prompt'):\n",
|
552 |
" text_features = model.get_text_features(**ids)\n",
|
553 |
" text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
554 |
" sim = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n",
|
555 |
" #-----#\n",
|
|
|
|
|
556 |
" dots[index] = sim\n",
|
557 |
" names[index] = name\n",
|
|
|
|
|
558 |
"#------#\n",
|
|
|
559 |
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
560 |
+
"#------#\n",
|
561 |
"for index in range(NUM_PERMUTATIONS):\n",
|
562 |
" print(names[indices[index].item()])\n",
|
563 |
" print(f'similiarity = {round(sorted[index].item(),2)} %')\n",
|
564 |
+
" print('------')\n",
|
565 |
+
"#------#\n",
|
566 |
+
"db_vocab.close() #close the file"
|
567 |
],
|
568 |
"metadata": {
|
569 |
"collapsed": true,
|
|
|
605 |
],
|
606 |
"metadata": {
|
607 |
"id": "QQOjh5BvnG8M",
|
608 |
+
"collapsed": true,
|
609 |
+
"cellView": "form"
|
610 |
},
|
611 |
"execution_count": null,
|
612 |
"outputs": []
|