Upload sd_token_similarity_calculator.ipynb
Browse files- sd_token_similarity_calculator.ipynb +120 -52
sd_token_similarity_calculator.ipynb
CHANGED
@@ -3,8 +3,7 @@
|
|
3 |
"nbformat_minor": 0,
|
4 |
"metadata": {
|
5 |
"colab": {
|
6 |
-
"provenance": []
|
7 |
-
"gpuType": "T4"
|
8 |
},
|
9 |
"kernelspec": {
|
10 |
"name": "python3",
|
@@ -12,8 +11,7 @@
|
|
12 |
},
|
13 |
"language_info": {
|
14 |
"name": "python"
|
15 |
-
}
|
16 |
-
"accelerator": "GPU"
|
17 |
},
|
18 |
"cells": [
|
19 |
{
|
@@ -155,30 +153,115 @@
|
|
155 |
"#print(get_token(35894))\n"
|
156 |
],
|
157 |
"metadata": {
|
158 |
-
"id": "
|
159 |
-
"collapsed": true,
|
160 |
-
"colab": {
|
161 |
-
"base_uri": "https://localhost:8080/"
|
162 |
-
},
|
163 |
-
"outputId": "42e8d455-ca0a-4c78-dba7-a32d9dee9b41"
|
164 |
},
|
165 |
-
"execution_count":
|
166 |
-
"outputs": [
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
},
|
183 |
{
|
184 |
"cell_type": "code",
|
@@ -1097,27 +1180,14 @@
|
|
1097 |
{
|
1098 |
"cell_type": "code",
|
1099 |
"source": [
|
|
|
1100 |
"\n",
|
1101 |
-
"
|
1102 |
-
"
|
1103 |
-
"!git clone https://huggingface.co/datasets/codeShare/text-to-image-prompts\n",
|
1104 |
-
"\n",
|
1105 |
-
"#Initialize\n",
|
1106 |
"import os\n",
|
1107 |
-
"
|
1108 |
-
"
|
1109 |
-
"
|
1110 |
-
],
|
1111 |
-
"metadata": {
|
1112 |
-
"id": "Qy51FFu8aVNA"
|
1113 |
-
},
|
1114 |
-
"execution_count": null,
|
1115 |
-
"outputs": []
|
1116 |
-
},
|
1117 |
-
{
|
1118 |
-
"cell_type": "code",
|
1119 |
-
"source": [
|
1120 |
-
"# @title Make your own text_encodings .db file for later use\n",
|
1121 |
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
1122 |
"from transformers import AutoTokenizer\n",
|
1123 |
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
@@ -1125,20 +1195,18 @@
|
|
1125 |
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
1126 |
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\").to(device)\n",
|
1127 |
"\n",
|
1128 |
-
"
|
1129 |
-
"import json\n",
|
1130 |
-
"import pandas as pd\n",
|
1131 |
"\n",
|
1132 |
"my_mkdirs('/content/text_encodings/')\n",
|
1133 |
"filename = ''\n",
|
1134 |
"\n",
|
1135 |
-
"for file_index in range(34):\n",
|
1136 |
" if file_index <1: continue\n",
|
1137 |
" filename = f'🦜 fusion-t2i-prompt-features-{file_index}'\n",
|
1138 |
" #🦜 fusion-t2i-prompt-features-1.json\n",
|
1139 |
"\n",
|
1140 |
" # Read suffix.json\n",
|
1141 |
-
" %cd /content/text-to-image-prompts/civitai-prompts/green
|
1142 |
" with open(filename + '.json', 'r') as f:\n",
|
1143 |
" data = json.load(f)\n",
|
1144 |
" _df = pd.DataFrame({'count': data})['count']\n",
|
@@ -1153,7 +1221,7 @@
|
|
1153 |
" %cd /content/text_encodings/\n",
|
1154 |
" import shelve\n",
|
1155 |
" d = shelve.open(filename)\n",
|
1156 |
-
" for index in range(NUM_ITEMS):\n",
|
1157 |
" inputs = tokenizer(text = '' + prompts[f'{index}'], padding=True, return_tensors=\"pt\").to(device)\n",
|
1158 |
" text_features = model.get_text_features(**inputs).to(device)\n",
|
1159 |
" text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True).to(device)\n",
|
|
|
3 |
"nbformat_minor": 0,
|
4 |
"metadata": {
|
5 |
"colab": {
|
6 |
+
"provenance": []
|
|
|
7 |
},
|
8 |
"kernelspec": {
|
9 |
"name": "python3",
|
|
|
11 |
},
|
12 |
"language_info": {
|
13 |
"name": "python"
|
14 |
+
}
|
|
|
15 |
},
|
16 |
"cells": [
|
17 |
{
|
|
|
153 |
"#print(get_token(35894))\n"
|
154 |
],
|
155 |
"metadata": {
|
156 |
+
"id": "w8O0TX7PBh5m"
|
|
|
|
|
|
|
|
|
|
|
157 |
},
|
158 |
+
"execution_count": null,
|
159 |
+
"outputs": []
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"cell_type": "code",
|
163 |
+
"source": [
|
164 |
+
"# @title Load/initialize values (new version - ignore this cell)\n",
|
165 |
+
"#Imports\n",
|
166 |
+
"import json , os , shelve , torch\n",
|
167 |
+
"import pandas as pd\n",
|
168 |
+
"#----#\n",
|
169 |
+
"\n",
|
170 |
+
"def my_mkdirs(folder):\n",
|
171 |
+
" if os.path.exists(folder)==False:\n",
|
172 |
+
" os.makedirs(folder)\n",
|
173 |
+
"\n",
|
174 |
+
"def _modulus(_id,id_max):\n",
|
175 |
+
" id = _id\n",
|
176 |
+
" while(id>id_max):\n",
|
177 |
+
" id = id-id_max\n",
|
178 |
+
" return id\n",
|
179 |
+
"\n",
|
180 |
+
"def getPrompts(_path):\n",
|
181 |
+
" path = _path + '/text'\n",
|
182 |
+
" path_enc = _path + '/text_encodings'\n",
|
183 |
+
" #-----#\n",
|
184 |
+
" index = 0\n",
|
185 |
+
" file_index = 0\n",
|
186 |
+
" prompts = {}\n",
|
187 |
+
" text_encodings = {}\n",
|
188 |
+
" _text_encodings = {}\n",
|
189 |
+
" #-----#\n",
|
190 |
+
" for filename in os.listdir(f'{path}'):\n",
|
191 |
+
"\n",
|
192 |
+
" print(f'reading {filename}....')\n",
|
193 |
+
" _index = 0\n",
|
194 |
+
" %cd {path}\n",
|
195 |
+
" with open(f'{filename}', 'r') as f:\n",
|
196 |
+
" data = json.load(f)\n",
|
197 |
+
" #------#\n",
|
198 |
+
" _df = pd.DataFrame({'count': data})['count']\n",
|
199 |
+
" _prompts = {\n",
|
200 |
+
" key : value for key, value in _df.items()\n",
|
201 |
+
" }\n",
|
202 |
+
" for key in _prompts:\n",
|
203 |
+
" _index = int(key)\n",
|
204 |
+
" value = _prompts[key]\n",
|
205 |
+
"\n",
|
206 |
+
" #Read the 'header' file in the JSON\n",
|
207 |
+
" if _index <= 0 :\n",
|
208 |
+
" _NUM_ITEMS = int(value)\n",
|
209 |
+
" index = index + 1\n",
|
210 |
+
" continue\n",
|
211 |
+
" if _index <= 1 :\n",
|
212 |
+
" _file_name = f'{value}'\n",
|
213 |
+
" %cd {path_enc}\n",
|
214 |
+
" _text_encodings = shelve.open(_file_name)\n",
|
215 |
+
" #Store text_encodings for the header items\n",
|
216 |
+
" text_encodings[f'{index-1}'] = _text_encodings[f'{_index-1}']\n",
|
217 |
+
" text_encodings[f'{index}'] = _text_encodings[f'{_index}']\n",
|
218 |
+
" #------#\n",
|
219 |
+
" index = index + 1\n",
|
220 |
+
" continue\n",
|
221 |
+
" #------#\n",
|
222 |
+
" #Read the text_encodings + prompts\n",
|
223 |
+
" text_encodings[f'{index}'] = _text_encodings[f'{_index}']\n",
|
224 |
+
" prompts[f'{index}'] = _prompts[f'{_index}']\n",
|
225 |
+
" index = index + 1\n",
|
226 |
+
" continue\n",
|
227 |
+
" #-------#\n",
|
228 |
+
" #--------#\n",
|
229 |
+
" _text_encodings.close() #close the text_encodings file\n",
|
230 |
+
" file_index = file_index + 1\n",
|
231 |
+
" #----------#\n",
|
232 |
+
" RANGE = index\n",
|
233 |
+
" return prompts , text_encodings , NUM_TOKENS\n",
|
234 |
+
" #--------#\n",
|
235 |
+
"\n",
|
236 |
+
"#for key in prompts:\n",
|
237 |
+
"# value = prompts[key]\n",
|
238 |
+
"# if int(key)>=1000:break\n",
|
239 |
+
"# print(value)\n",
|
240 |
+
"#------#\n"
|
241 |
+
],
|
242 |
+
"metadata": {
|
243 |
+
"cellView": "form",
|
244 |
+
"id": "rUXQ73IbonHY"
|
245 |
+
},
|
246 |
+
"execution_count": null,
|
247 |
+
"outputs": []
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"cell_type": "code",
|
251 |
+
"source": [
|
252 |
+
"# @title Load the tokens into the colab (new version - ignore this cell)\n",
|
253 |
+
"%cd /content/\n",
|
254 |
+
"!git clone https://huggingface.co/datasets/codeShare/text-to-image-prompts\n",
|
255 |
+
"#------#\n",
|
256 |
+
"path = '/content/text-to-image-prompts/civitai-prompts/green'\n",
|
257 |
+
"prompts , text_encodings, RANGE = getPrompts(path)"
|
258 |
+
],
|
259 |
+
"metadata": {
|
260 |
+
"cellView": "form",
|
261 |
+
"id": "ZMG4CThUAmwW"
|
262 |
+
},
|
263 |
+
"execution_count": null,
|
264 |
+
"outputs": []
|
265 |
},
|
266 |
{
|
267 |
"cell_type": "code",
|
|
|
1180 |
{
|
1181 |
"cell_type": "code",
|
1182 |
"source": [
|
1183 |
+
"# @title Make your own text_encodings .db file for later use (using GPU is recommended)\n",
|
1184 |
"\n",
|
1185 |
+
"import json\n",
|
1186 |
+
"import pandas as pd\n",
|
|
|
|
|
|
|
1187 |
"import os\n",
|
1188 |
+
"import shelve\n",
|
1189 |
+
"import torch\n",
|
1190 |
+
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1191 |
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
1192 |
"from transformers import AutoTokenizer\n",
|
1193 |
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
|
|
1195 |
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
1196 |
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\").to(device)\n",
|
1197 |
"\n",
|
1198 |
+
"%cd /content/\n",
|
|
|
|
|
1199 |
"\n",
|
1200 |
"my_mkdirs('/content/text_encodings/')\n",
|
1201 |
"filename = ''\n",
|
1202 |
"\n",
|
1203 |
+
"for file_index in range(34 + 1):\n",
|
1204 |
" if file_index <1: continue\n",
|
1205 |
" filename = f'🦜 fusion-t2i-prompt-features-{file_index}'\n",
|
1206 |
" #🦜 fusion-t2i-prompt-features-1.json\n",
|
1207 |
"\n",
|
1208 |
" # Read suffix.json\n",
|
1209 |
+
" %cd /content/text-to-image-prompts/civitai-prompts/green/text\n",
|
1210 |
" with open(filename + '.json', 'r') as f:\n",
|
1211 |
" data = json.load(f)\n",
|
1212 |
" _df = pd.DataFrame({'count': data})['count']\n",
|
|
|
1221 |
" %cd /content/text_encodings/\n",
|
1222 |
" import shelve\n",
|
1223 |
" d = shelve.open(filename)\n",
|
1224 |
+
" for index in range(NUM_ITEMS + 1):\n",
|
1225 |
" inputs = tokenizer(text = '' + prompts[f'{index}'], padding=True, return_tensors=\"pt\").to(device)\n",
|
1226 |
" text_features = model.get_text_features(**inputs).to(device)\n",
|
1227 |
" text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True).to(device)\n",
|