Commit
·
10f1d26
1
Parent(s):
57ae960
Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +11 -11
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -15.26 +/- 3.00
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3497d1690668e840d89643ffb0f96fe483d7d139a95c2fdc77d1dac15c1c7cb
|
3 |
+
size 103751
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -41,12 +41,12 @@
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
@@ -55,10 +55,10 @@
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[ 0.
|
60 |
-
"desired_goal": "[[
|
61 |
-
"observation": "[[ 0.
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,9 +66,9 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[-
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
@@ -77,13 +77,13 @@
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000,
|
45 |
+
"_total_timesteps": 1000,
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1679253293597352130,
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAY/oEP5ufL70pcsw/Y/oEP5ufL70pcsw/Y/oEP5ufL70pcsw/Y/oEP5ufL70pcsw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7gIFv0tB2r8s17Q/YbKRvrJh4r6F3qy/VZFfP+hoBL6JGK+/kLMfv5ArCL8UrXm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABj+gQ/m58vvSlyzD/dYg4+dQQwPJcF5j1j+gQ/m58vvSlyzD/dYg4+dQQwPJcF5j1j+gQ/m58vvSlyzD/dYg4+dQQwPJcF5j1j+gQ/m58vvSlyzD/dYg4+dQQwPJcF5j2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.5194456 -0.04287682 1.5972339 ]\n [ 0.5194456 -0.04287682 1.5972339 ]\n [ 0.5194456 -0.04287682 1.5972339 ]\n [ 0.5194456 -0.04287682 1.5972339 ]]",
|
60 |
+
"desired_goal": "[[-0.51957595 -1.7051176 1.4128165 ]\n [-0.28456405 -0.4421516 -1.3505408 ]\n [ 0.87331134 -0.12930644 -1.3679363 ]\n [-0.62383366 -0.5319147 -0.9752972 ]]",
|
61 |
+
"observation": "[[ 0.5194456 -0.04287682 1.5972339 0.13904901 0.01074325 0.11231535]\n [ 0.5194456 -0.04287682 1.5972339 0.13904901 0.01074325 0.11231535]\n [ 0.5194456 -0.04287682 1.5972339 0.13904901 0.01074325 0.11231535]\n [ 0.5194456 -0.04287682 1.5972339 0.13904901 0.01074325 0.11231535]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2vgKvrFPxD0NAlQ+IpyOva4QfDtL4l0+G4a9vS4LSrzZhKI86/D+vRYRuDs0GfY9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.13571492 0.09585512 0.20703907]\n [-0.06963374 0.00384621 0.21668355]\n [-0.09254094 -0.01233177 0.01983874]\n [-0.12448295 0.00561727 0.12016526]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVnQMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/RNcrKhRJcCUhpRSlIwBbJRLMowBdJRHP+xpCa7VawF1fZQoaAZoCWgPQwjfawiOy/gowJSGlFKUaBVLMmgWRz/oFPSDyvs7dX2UKGgGaAloD0MIbECEuHK2GcCUhpRSlGgVSzJoFkc/5FYr8R+SbHV9lChoBmgJaA9DCMKKU62FiSzAlIaUUpRoFUsyaBZHP+CcinpB5X51fZQoaAZoCWgPQwiDp5Ar9bwiwJSGlFKUaBVLMmgWRz/69wvQF9rodX2UKGgGaAloD0MIuRgD6zg2McCUhpRSlGgVSzJoFkc/+NJe3QUpNXV9lChoBmgJaA9DCPdXj/tWkzTAlIaUUpRoFUsyaBZHP/cBBRhttQ91fZQoaAZoCWgPQwhjK2haYi0rwJSGlFKUaBVLMmgWRz/1Kd+XqqwRdX2UKGgGaAloD0MIE0VI3c7iM8CUhpRSlGgVSzJoFkdABArMC9ytFXV9lChoBmgJaA9DCGwIjsu4ISrAlIaUUpRoFUsyaBZHQAL4Ny5qdpZ1fZQoaAZoCWgPQwgBwLFnz/U2wJSGlFKUaBVLMmgWR0ACEIJJGvwFdX2UKGgGaAloD0MIlPsdigKtMcCUhpRSlGgVSzJoFkdAASTJyQxN7HV9lChoBmgJaA9DCAZKCiyAKRvAlIaUUpRoFUsyaBZHQAsKMNtqHoJ1fZQoaAZoCWgPQwgv205bIxIswJSGlFKUaBVLMmgWR0AJ+lXRw6yTdX2UKGgGaAloD0MIF9S3zOmiL8CUhpRSlGgVSzJoFkdACQ2DQJHAh3V9lChoBmgJaA9DCM7DCUynZSnAlIaUUpRoFUsyaBZHQAggtOEdvKl1fZQoaAZoCWgPQwiXdJSD2bwpwJSGlFKUaBVLMmgWR0AQ1wrDqGDddX2UKGgGaAloD0MIFto5zQLdKsCUhpRSlGgVSzJoFkdAEE7HAAQxvnV9lChoBmgJaA9DCBvV6UDWuybAlIaUUpRoFUsyaBZHQA+wqAjIJZ51fZQoaAZoCWgPQwhS1m8mpssXwJSGlFKUaBVLMmgWR0AOwvDgqEvkdWUu"
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
+
"_n_updates": 50,
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0857f3e6bc861d625ffcf89c492acec5bdd27108a543bcb30c27312117d5bbee
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:237efc263619ecc8fba281ec2188ec47e544e41a022bfbd68cc7cb7f732bcb58
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1ace5dd430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1ace5dbd40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1500000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679248685295489669, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAUtXPPmm7Fb0RThM/UtXPPmm7Fb0RThM/UtXPPmm7Fb0RThM/UtXPPmm7Fb0RThM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAHMbP0GbAj9FSQM/BdFOP36q2D8fisi/AxERPylfVb/3yAe9rFfWPXuRnT9TVfE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABS1c8+absVvRFOEz9JOVo8NCfcu/1TBztS1c8+absVvRFOEz9JOVo8NCfcu/1TBztS1c8+absVvRFOEz9JOVo8NCfcu/1TBztS1c8+absVvRFOEz9JOVo8NCfcu/1TBzuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.40592438 -0.03655568 0.57540995]\n [ 0.40592438 -0.03655568 0.57540995]\n [ 0.40592438 -0.03655568 0.57540995]\n [ 0.40592438 -0.03655568 0.57540995]]", "desired_goal": "[[ 0.6072235 0.5101815 0.51283675]\n [ 0.8078769 1.692703 -1.5667151 ]\n [ 0.5666658 -0.8334833 -0.03315064]\n [ 0.10465941 1.2310022 0.4713541 ]]", "observation": "[[ 0.40592438 -0.03655568 0.57540995 0.01331932 -0.00671854 0.00206494]\n [ 0.40592438 -0.03655568 0.57540995 0.01331932 -0.00671854 0.00206494]\n [ 0.40592438 -0.03655568 0.57540995 0.01331932 -0.00671854 0.00206494]\n [ 0.40592438 -0.03655568 0.57540995 0.01331932 -0.00671854 0.00206494]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbl4TvRmHLjh7rJY+l6YwvPRCTr3l3Io+HtoPvsXE3L3Lm7g9PFOMPUwXvjwNlYE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-3.5978727e-02 4.1610652e-05 2.9428467e-01]\n [-1.0781906e-02 -5.0356820e-02 2.7121654e-01]\n [-1.4048049e-01 -1.0779718e-01 9.0140902e-02]\n [ 6.8518132e-02 2.3204468e-02 2.5309029e-01]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIord4eM8hGcCUhpRSlIwBbJRLMowBdJRHQLEBRjrAxi51fZQoaAZoCWgPQwgyObUzTA0KwJSGlFKUaBVLMmgWR0CxARvATIvKdX2UKGgGaAloD0MIzox+NJyiJsCUhpRSlGgVSzJoFkdAsQDyWkadc3V9lChoBmgJaA9DCKxwy0dSWiLAlIaUUpRoFUsyaBZHQLEA0+c6Nl11fZQoaAZoCWgPQwiUUPpCyJkSwJSGlFKUaBVLMmgWR0CxAbtgjQiSdX2UKGgGaAloD0MIUU60q5CiKMCUhpRSlGgVSzJoFkdAsQGQ71ZkkXV9lChoBmgJaA9DCPZ+ox03vCHAlIaUUpRoFUsyaBZHQLEBZ4QBgeB1fZQoaAZoCWgPQwgWMewwJlUkwJSGlFKUaBVLMmgWR0CxAUkIkZ75dX2UKGgGaAloD0MIY/GbwkoFEcCUhpRSlGgVSzJoFkdAsQIvBtUGV3V9lChoBmgJaA9DCGHD0ytl2QzAlIaUUpRoFUsyaBZHQLECBJBgNPR1fZQoaAZoCWgPQwiLM4Y5QZsXwJSGlFKUaBVLMmgWR0CxAdsrRSgodX2UKGgGaAloD0MILJrOTgYHJcCUhpRSlGgVSzJoFkdAsQG82kzoEHV9lChoBmgJaA9DCGWMD7OXHSHAlIaUUpRoFUsyaBZHQLECpc1wYLt1fZQoaAZoCWgPQwgS3bOu0YIVwJSGlFKUaBVLMmgWR0CxAntITXardX2UKGgGaAloD0MI24r9ZffUJMCUhpRSlGgVSzJoFkdAsQJR5jYqXnV9lChoBmgJaA9DCFm+LsN/+hHAlIaUUpRoFUsyaBZHQLECM4agmJF1fZQoaAZoCWgPQwhcjexKy8gSwJSGlFKUaBVLMmgWR0CxAxbrHEMtdX2UKGgGaAloD0MIba6a54isJ8CUhpRSlGgVSzJoFkdAsQLshTwUg3V9lChoBmgJaA9DCBWrBmFuxyXAlIaUUpRoFUsyaBZHQLECwxJd0JZ1fZQoaAZoCWgPQwiXxi+8kmQBwJSGlFKUaBVLMmgWR0CxAqSuU2UCdX2UKGgGaAloD0MIeEZblUQGI8CUhpRSlGgVSzJoFkdAsQOOUkfLcXV9lChoBmgJaA9DCBoaTwRxPg/AlIaUUpRoFUsyaBZHQLEDY+RHPNV1fZQoaAZoCWgPQwiqYFRSJ5ARwJSGlFKUaBVLMmgWR0CxAzqVQhwEdX2UKGgGaAloD0MIsWt7uyVpGcCUhpRSlGgVSzJoFkdAsQMcLZzxPXV9lChoBmgJaA9DCKd6Mv/oWyPAlIaUUpRoFUsyaBZHQLEECnhKlHl1fZQoaAZoCWgPQwjHLlG9NcAcwJSGlFKUaBVLMmgWR0CxA9/+OwPidX2UKGgGaAloD0MIkiOdgZH3IcCUhpRSlGgVSzJoFkdAsQO2psGgSXV9lChoBmgJaA9DCM8vStBfmBbAlIaUUpRoFUsyaBZHQLEDmD1Gsmx1fZQoaAZoCWgPQwiA8+LEV4MpwJSGlFKUaBVLMmgWR0CxBIIw/PgOdX2UKGgGaAloD0MIt2J/2T0hKMCUhpRSlGgVSzJoFkdAsQRXszEaVHV9lChoBmgJaA9DCCEE5EuoSCHAlIaUUpRoFUsyaBZHQLEELkpI+W51fZQoaAZoCWgPQwhJTbuYZgoXwJSGlFKUaBVLMmgWR0CxBA/zasZHdX2UKGgGaAloD0MIHF2lu+tMBsCUhpRSlGgVSzJoFkdAsQUVchTwUnV9lChoBmgJaA9DCLLxYIvdHhTAlIaUUpRoFUsyaBZHQLEE60XP7el1fZQoaAZoCWgPQwgOorWizREUwJSGlFKUaBVLMmgWR0CxBMIfjjrBdX2UKGgGaAloD0MI4dBbPLwHHsCUhpRSlGgVSzJoFkdAsQSkTxoZh3V9lChoBmgJaA9DCDBmS1ZFGBDAlIaUUpRoFUsyaBZHQLEFyiaAnUl1fZQoaAZoCWgPQwjeH+9VK7MOwJSGlFKUaBVLMmgWR0CxBZ/eP7vYdX2UKGgGaAloD0MI+vAsQUZgIMCUhpRSlGgVSzJoFkdAsQV24e9zwXV9lChoBmgJaA9DCOjewyXHzRDAlIaUUpRoFUsyaBZHQLEFWQVsUIt1fZQoaAZoCWgPQwjC3O7lPskhwJSGlFKUaBVLMmgWR0CxBodYB/7SdX2UKGgGaAloD0MIMH+FzJWRHsCUhpRSlGgVSzJoFkdAsQZdLRKHwnV9lChoBmgJaA9DCHJsPUM41hXAlIaUUpRoFUsyaBZHQLEGNCzTnaF1fZQoaAZoCWgPQwivQV96+6McwJSGlFKUaBVLMmgWR0CxBhYYvWYndX2UKGgGaAloD0MIteBFX0EaGsCUhpRSlGgVSzJoFkdAsQdG5sj3VXV9lChoBmgJaA9DCDXwoxr2+xrAlIaUUpRoFUsyaBZHQLEHHL0z0pV1fZQoaAZoCWgPQwgAxciSORYbwJSGlFKUaBVLMmgWR0CxBvOtGNJfdX2UKGgGaAloD0MI7iWN0TpaJ8CUhpRSlGgVSzJoFkdAsQbVnrY5DXV9lChoBmgJaA9DCHUhVn+EAQ/AlIaUUpRoFUsyaBZHQLEIC0Rvm5l1fZQoaAZoCWgPQwgTYcPTK+UVwJSGlFKUaBVLMmgWR0CxB+Er9VFQdX2UKGgGaAloD0MICB10CYfeB8CUhpRSlGgVSzJoFkdAsQe4JpnHvXV9lChoBmgJaA9DCJqzPuWYBCrAlIaUUpRoFUsyaBZHQLEHmjy4FzN1fZQoaAZoCWgPQwhxx5v8Fs0SwJSGlFKUaBVLMmgWR0CxCMuA3DNydX2UKGgGaAloD0MI/mDgufdQEMCUhpRSlGgVSzJoFkdAsQihRXOnmHV9lChoBmgJaA9DCEnYt5OIsBXAlIaUUpRoFUsyaBZHQLEIeC2c8T11fZQoaAZoCWgPQwgpkxraAEwSwJSGlFKUaBVLMmgWR0CxCFo3R5TqdX2UKGgGaAloD0MItVNzucHAHMCUhpRSlGgVSzJoFkdAsQlxr56+nXV9lChoBmgJaA9DCDQO9buwzSjAlIaUUpRoFUsyaBZHQLEJRzxgAp91fZQoaAZoCWgPQwjeyafHtvwQwJSGlFKUaBVLMmgWR0CxCR3PNVzZdX2UKGgGaAloD0MIbO19qgptGMCUhpRSlGgVSzJoFkdAsQj/YywfQ3V9lChoBmgJaA9DCJ7OFaWEMBfAlIaUUpRoFUsyaBZHQLEJ77hegL91fZQoaAZoCWgPQwjtZdtpawQgwJSGlFKUaBVLMmgWR0CxCcVXiiqRdX2UKGgGaAloD0MIgQUwZeCII8CUhpRSlGgVSzJoFkdAsQmb6ab4J3V9lChoBmgJaA9DCEmil1EsFw7AlIaUUpRoFUsyaBZHQLEJfYigTRJ1fZQoaAZoCWgPQwhgd7rzxPMZwJSGlFKUaBVLMmgWR0CxCmVZ9uxbdX2UKGgGaAloD0MI7dXHQ98VKMCUhpRSlGgVSzJoFkdAsQo68SPEKnV9lChoBmgJaA9DCMQnnUgwpRHAlIaUUpRoFUsyaBZHQLEKEYVZcLV1fZQoaAZoCWgPQwiM9Q1MbjQawJSGlFKUaBVLMmgWR0CxCfMnZ00WdX2UKGgGaAloD0MI5pDUQsmkCcCUhpRSlGgVSzJoFkdAsQrbRu0kW3V9lChoBmgJaA9DCOaWVkPizhDAlIaUUpRoFUsyaBZHQLEKsLx7RfF1fZQoaAZoCWgPQwj1KjI6IMkIwJSGlFKUaBVLMmgWR0CxCodM495hdX2UKGgGaAloD0MIQPhQoiW/GcCUhpRSlGgVSzJoFkdAsQpo6zVtoHV9lChoBmgJaA9DCG/UCtP3GgnAlIaUUpRoFUsyaBZHQLELUHCXQdF1fZQoaAZoCWgPQwhCeLRxxIoVwJSGlFKUaBVLMmgWR0CxCyX3L3bmdX2UKGgGaAloD0MIiPNwAtOJIMCUhpRSlGgVSzJoFkdAsQr8kTpPh3V9lChoBmgJaA9DCOTZ5Vsflg3AlIaUUpRoFUsyaBZHQLEK3i0v4/N1fZQoaAZoCWgPQwge3J21244EwJSGlFKUaBVLMmgWR0CxC8f4yoGZdX2UKGgGaAloD0MI+kUJ+gu9DsCUhpRSlGgVSzJoFkdAsQudb6guiHV9lChoBmgJaA9DCOIGfH4YMR3AlIaUUpRoFUsyaBZHQLELdAIY3vR1fZQoaAZoCWgPQwiwO9154tkYwJSGlFKUaBVLMmgWR0CxC1WbG3nZdX2UKGgGaAloD0MIK9zykZQEEMCUhpRSlGgVSzJoFkdAsQw9F3IMjXV9lChoBmgJaA9DCP0v16IFOCHAlIaUUpRoFUsyaBZHQLEMEozN2Tx1fZQoaAZoCWgPQwhtWFNZFFYgwJSGlFKUaBVLMmgWR0CxC+k1qFh5dX2UKGgGaAloD0MIePATB9APLMCUhpRSlGgVSzJoFkdAsQvKyIHkcXV9lChoBmgJaA9DCJgXYB+dEiDAlIaUUpRoFUsyaBZHQLEMtSMLncN1fZQoaAZoCWgPQwhGeHsQAuIXwJSGlFKUaBVLMmgWR0CxDIq8cuJ2dX2UKGgGaAloD0MISREZVvEeK8CUhpRSlGgVSzJoFkdAsQxhYRujynV9lChoBmgJaA9DCPRr66f/bBfAlIaUUpRoFUsyaBZHQLEMQu8K5TZ1fZQoaAZoCWgPQwjRIAVPIXcZwJSGlFKUaBVLMmgWR0CxDSkj9n9OdX2UKGgGaAloD0MIgdHlzeGaHsCUhpRSlGgVSzJoFkdAsQz+xt52QnV9lChoBmgJaA9DCHODoQ4rBCnAlIaUUpRoFUsyaBZHQLEM1Vo6CDp1fZQoaAZoCWgPQwjCNAwfEfMcwJSGlFKUaBVLMmgWR0CxDLcURFqjdX2UKGgGaAloD0MIoijQJ/K8I8CUhpRSlGgVSzJoFkdAsQ2hH7P6bnV9lChoBmgJaA9DCOIgIcoX/CDAlIaUUpRoFUsyaBZHQLENdpqREF51fZQoaAZoCWgPQwgBbECEuJIjwJSGlFKUaBVLMmgWR0CxDU0ulGgBdX2UKGgGaAloD0MIjJ5b6Er0HMCUhpRSlGgVSzJoFkdAsQ0uzIFNcnV9lChoBmgJaA9DCH9pUZ/kViHAlIaUUpRoFUsyaBZHQLEOGtPYWcl1fZQoaAZoCWgPQwhU/N8RFcIiwJSGlFKUaBVLMmgWR0CxDfBnBciXdX2UKGgGaAloD0MIvyoXKv9SKMCUhpRSlGgVSzJoFkdAsQ3HAh0QsnV9lChoBmgJaA9DCAjjp3FvBijAlIaUUpRoFUsyaBZHQLENqKm8/Ux1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 75000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1ace5dd430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1ace5dbd40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679253293597352130, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAY/oEP5ufL70pcsw/Y/oEP5ufL70pcsw/Y/oEP5ufL70pcsw/Y/oEP5ufL70pcsw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7gIFv0tB2r8s17Q/YbKRvrJh4r6F3qy/VZFfP+hoBL6JGK+/kLMfv5ArCL8UrXm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABj+gQ/m58vvSlyzD/dYg4+dQQwPJcF5j1j+gQ/m58vvSlyzD/dYg4+dQQwPJcF5j1j+gQ/m58vvSlyzD/dYg4+dQQwPJcF5j1j+gQ/m58vvSlyzD/dYg4+dQQwPJcF5j2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.5194456 -0.04287682 1.5972339 ]\n [ 0.5194456 -0.04287682 1.5972339 ]\n [ 0.5194456 -0.04287682 1.5972339 ]\n [ 0.5194456 -0.04287682 1.5972339 ]]", "desired_goal": "[[-0.51957595 -1.7051176 1.4128165 ]\n [-0.28456405 -0.4421516 -1.3505408 ]\n [ 0.87331134 -0.12930644 -1.3679363 ]\n [-0.62383366 -0.5319147 -0.9752972 ]]", "observation": "[[ 0.5194456 -0.04287682 1.5972339 0.13904901 0.01074325 0.11231535]\n [ 0.5194456 -0.04287682 1.5972339 0.13904901 0.01074325 0.11231535]\n [ 0.5194456 -0.04287682 1.5972339 0.13904901 0.01074325 0.11231535]\n [ 0.5194456 -0.04287682 1.5972339 0.13904901 0.01074325 0.11231535]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2vgKvrFPxD0NAlQ+IpyOva4QfDtL4l0+G4a9vS4LSrzZhKI86/D+vRYRuDs0GfY9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.13571492 0.09585512 0.20703907]\n [-0.06963374 0.00384621 0.21668355]\n [-0.09254094 -0.01233177 0.01983874]\n [-0.12448295 0.00561727 0.12016526]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVnQMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/RNcrKhRJcCUhpRSlIwBbJRLMowBdJRHP+xpCa7VawF1fZQoaAZoCWgPQwjfawiOy/gowJSGlFKUaBVLMmgWRz/oFPSDyvs7dX2UKGgGaAloD0MIbECEuHK2GcCUhpRSlGgVSzJoFkc/5FYr8R+SbHV9lChoBmgJaA9DCMKKU62FiSzAlIaUUpRoFUsyaBZHP+CcinpB5X51fZQoaAZoCWgPQwiDp5Ar9bwiwJSGlFKUaBVLMmgWRz/69wvQF9rodX2UKGgGaAloD0MIuRgD6zg2McCUhpRSlGgVSzJoFkc/+NJe3QUpNXV9lChoBmgJaA9DCPdXj/tWkzTAlIaUUpRoFUsyaBZHP/cBBRhttQ91fZQoaAZoCWgPQwhjK2haYi0rwJSGlFKUaBVLMmgWRz/1Kd+XqqwRdX2UKGgGaAloD0MIE0VI3c7iM8CUhpRSlGgVSzJoFkdABArMC9ytFXV9lChoBmgJaA9DCGwIjsu4ISrAlIaUUpRoFUsyaBZHQAL4Ny5qdpZ1fZQoaAZoCWgPQwgBwLFnz/U2wJSGlFKUaBVLMmgWR0ACEIJJGvwFdX2UKGgGaAloD0MIlPsdigKtMcCUhpRSlGgVSzJoFkdAASTJyQxN7HV9lChoBmgJaA9DCAZKCiyAKRvAlIaUUpRoFUsyaBZHQAsKMNtqHoJ1fZQoaAZoCWgPQwgv205bIxIswJSGlFKUaBVLMmgWR0AJ+lXRw6yTdX2UKGgGaAloD0MIF9S3zOmiL8CUhpRSlGgVSzJoFkdACQ2DQJHAh3V9lChoBmgJaA9DCM7DCUynZSnAlIaUUpRoFUsyaBZHQAggtOEdvKl1fZQoaAZoCWgPQwiXdJSD2bwpwJSGlFKUaBVLMmgWR0AQ1wrDqGDddX2UKGgGaAloD0MIFto5zQLdKsCUhpRSlGgVSzJoFkdAEE7HAAQxvnV9lChoBmgJaA9DCBvV6UDWuybAlIaUUpRoFUsyaBZHQA+wqAjIJZ51fZQoaAZoCWgPQwhS1m8mpssXwJSGlFKUaBVLMmgWR0AOwvDgqEvkdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -15.264231492951513, "std_reward": 2.997236105321725, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T19:15:05.787447"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:210010bba3e1447eee37c2203e3ee337bde9554023bd2e21be15cba40b4e839e
|
3 |
size 3056
|