codeSpaghetti commited on
Commit
e82efbb
·
1 Parent(s): 978c1dd

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -3.61 +/- 0.92
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12f145b88ba739d3aa033aa2b66ae13982f91fd9f7fdc448221b5e88c5bdd5dc
3
+ size 108028
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1ace5dd430>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f1ace5dbd40>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1679245059865863500,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjPLHPiF/nLw6Wg0/jPLHPiF/nLw6Wg0/jPLHPiF/nLw6Wg0/jPLHPiF/nLw6Wg0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATfZWv/zIzz4zKcK/sHv9vpm7Pz+m+cu/sPxbvxBGvb8MSb68HuVVPjFm0z8bg8i+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACM8sc+IX+cvDpaDT88+ly8a/deuzRQA7yM8sc+IX+cvDpaDT88+ly8a/deuzRQA7yM8sc+IX+cvDpaDT88+ly8a/deuzRQA7yM8sc+IX+cvDpaDT88+ly8a/deuzRQA7yUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.39052236 -0.01910359 0.552158 ]\n [ 0.39052236 -0.01910359 0.552158 ]\n [ 0.39052236 -0.01910359 0.552158 ]\n [ 0.39052236 -0.01910359 0.552158 ]]",
60
+ "desired_goal": "[[-0.83969575 0.40583026 -1.5168823 ]\n [-0.4950843 0.74895626 -1.5935562 ]\n [-0.85932446 -1.4787006 -0.02322819]\n [ 0.20888183 1.6515561 -0.39162526]]",
61
+ "observation": "[[ 0.39052236 -0.01910359 0.552158 -0.01348739 -0.0034022 -0.00801473]\n [ 0.39052236 -0.01910359 0.552158 -0.01348739 -0.0034022 -0.00801473]\n [ 0.39052236 -0.01910359 0.552158 -0.01348739 -0.0034022 -0.00801473]\n [ 0.39052236 -0.01910359 0.552158 -0.01348739 -0.0034022 -0.00801473]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAZhnvPA1UQb2i0s49JJMSPRE71b3GUyk+7Ycuuo/shLuXx0U9P4pfPHmmg70c5mw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.02918692 -0.0471993 0.10098769]\n [ 0.03578486 -0.10411657 0.16535863]\n [-0.00066578 -0.00405652 0.04828605]\n [ 0.0136438 -0.06428237 0.23134655]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIU0FF1a+0DcCUhpRSlIwBbJRLMowBdJRHQKbETGiHqNZ1fZQoaAZoCWgPQwgXf9sTJDYAwJSGlFKUaBVLMmgWR0CmxA8T8HfNdX2UKGgGaAloD0MIrz4e+u72C8CUhpRSlGgVSzJoFkdApsPS02LpA3V9lChoBmgJaA9DCFa6u86GnATAlIaUUpRoFUsyaBZHQKbDk8jiXIF1fZQoaAZoCWgPQwiqSIWxheAIwJSGlFKUaBVLMmgWR0Cmxe/b9If9dX2UKGgGaAloD0MIJQSr6uW3BsCUhpRSlGgVSzJoFkdApsWzAzpHJHV9lChoBmgJaA9DCO84RUdy2QvAlIaUUpRoFUsyaBZHQKbFdzzVc2R1fZQoaAZoCWgPQwgMlBRYALMLwJSGlFKUaBVLMmgWR0CmxThybQTmdX2UKGgGaAloD0MIh913DI89BcCUhpRSlGgVSzJoFkdApsejBO58SnV9lChoBmgJaA9DCLO3lPPFvhDAlIaUUpRoFUsyaBZHQKbHZmK64Dt1fZQoaAZoCWgPQwhmho2yfnMNwJSGlFKUaBVLMmgWR0CmxypPZZjhdX2UKGgGaAloD0MIqyaIug9gD8CUhpRSlGgVSzJoFkdApsbrAgxJunV9lChoBmgJaA9DCLdFmQ0yaQXAlIaUUpRoFUsyaBZHQKbJQFIuoP11fZQoaAZoCWgPQwg0n3O364UDwJSGlFKUaBVLMmgWR0CmyQNWEK3NdX2UKGgGaAloD0MI5zbhXpmXCMCUhpRSlGgVSzJoFkdApsjHpKSPl3V9lChoBmgJaA9DCOwuUFJggQrAlIaUUpRoFUsyaBZHQKbIiB3A2yd1fZQoaAZoCWgPQwidEaW9wbcGwJSGlFKUaBVLMmgWR0Cmyqyi22G7dX2UKGgGaAloD0MI8gpET8pkCMCUhpRSlGgVSzJoFkdApspuvIOpbXV9lChoBmgJaA9DCBiw5CoWvwzAlIaUUpRoFUsyaBZHQKbKMd8Rcu91fZQoaAZoCWgPQwh1q+ek980AwJSGlFKUaBVLMmgWR0CmyfG96C17dX2UKGgGaAloD0MIH/gYrDi1CMCUhpRSlGgVSzJoFkdApsuihpQDWHV9lChoBmgJaA9DCDElkuhltALAlIaUUpRoFUsyaBZHQKbLZJ4jbBZ1fZQoaAZoCWgPQwgc6ndha3YIwJSGlFKUaBVLMmgWR0Cmyye/xlQNdX2UKGgGaAloD0MI3enOE895C8CUhpRSlGgVSzJoFkdApsrnxYq5LHV9lChoBmgJaA9DCCAJ+3YSMQjAlIaUUpRoFUsyaBZHQKbMkGVzIWB1fZQoaAZoCWgPQwhfRrHc0uoFwJSGlFKUaBVLMmgWR0CmzFKZ2IO6dX2UKGgGaAloD0MIpfW3BODfB8CUhpRSlGgVSzJoFkdApswVnscABHV9lChoBmgJaA9DCJ86Vik9cwbAlIaUUpRoFUsyaBZHQKbL1as6q811fZQoaAZoCWgPQwi8V61M+KUFwJSGlFKUaBVLMmgWR0CmzXyY5T60dX2UKGgGaAloD0MI0sPQ6uQMBsCUhpRSlGgVSzJoFkdAps0+njyWiXV9lChoBmgJaA9DCJj4o6gzdwzAlIaUUpRoFUsyaBZHQKbNAZhrnDB1fZQoaAZoCWgPQwgUzm4tkwEHwJSGlFKUaBVLMmgWR0CmzMFvQ4S6dX2UKGgGaAloD0MICcGqevl9CMCUhpRSlGgVSzJoFkdAps5iLOzIFXV9lChoBmgJaA9DCA01CklmtQTAlIaUUpRoFUsyaBZHQKbOJHJcPe51fZQoaAZoCWgPQwjkSdI1ky8NwJSGlFKUaBVLMmgWR0CmzeeNtIkJdX2UKGgGaAloD0MIe4fboWFRBMCUhpRSlGgVSzJoFkdAps2ndGiHqXV9lChoBmgJaA9DCB+94T5yawrAlIaUUpRoFUsyaBZHQKbPS4MF2V51fZQoaAZoCWgPQwgMdy6M9LISwJSGlFKUaBVLMmgWR0Cmzw2Vu76IdX2UKGgGaAloD0MI6kDWU6vPDsCUhpRSlGgVSzJoFkdAps7QrYoRZnV9lChoBmgJaA9DCAMJih9jbgXAlIaUUpRoFUsyaBZHQKbOkJ2t+1B1fZQoaAZoCWgPQwj59q5BX3oNwJSGlFKUaBVLMmgWR0Cm0DYtQKrrdX2UKGgGaAloD0MIaRoUzQO4DMCUhpRSlGgVSzJoFkdAps/4UFjd6HV9lChoBmgJaA9DCKiq0EAsOwLAlIaUUpRoFUsyaBZHQKbPu4Ia99N1fZQoaAZoCWgPQwjx8nSuKGUKwJSGlFKUaBVLMmgWR0Cmz3uZCv5hdX2UKGgGaAloD0MIqYb9nlgHB8CUhpRSlGgVSzJoFkdAptEgYNy5qnV9lChoBmgJaA9DCFXbTfBNUwjAlIaUUpRoFUsyaBZHQKbQ4nm7rcF1fZQoaAZoCWgPQwipvYi2Y6r/v5SGlFKUaBVLMmgWR0Cm0KWsijcmdX2UKGgGaAloD0MIvXMoQ1UMCMCUhpRSlGgVSzJoFkdAptBlmOEM9nV9lChoBmgJaA9DCJ3YQ/tY4QfAlIaUUpRoFUsyaBZHQKbSBOfNA1N1fZQoaAZoCWgPQwik3lM57ckFwJSGlFKUaBVLMmgWR0Cm0cdn9NvgdX2UKGgGaAloD0MIJF6ezhUFBcCUhpRSlGgVSzJoFkdAptGKgkC3gHV9lChoBmgJaA9DCB4X1SKiWATAlIaUUpRoFUsyaBZHQKbRSmuTzNF1fZQoaAZoCWgPQwjQfM7drvcIwJSGlFKUaBVLMmgWR0Cm0vyQ5myxdX2UKGgGaAloD0MIMo6R7BGqBsCUhpRSlGgVSzJoFkdAptK+oo/iYXV9lChoBmgJaA9DCKK2DaMgCBLAlIaUUpRoFUsyaBZHQKbSgbF0gbJ1fZQoaAZoCWgPQwgZdhiT/t4JwJSGlFKUaBVLMmgWR0Cm0kG2CulodX2UKGgGaAloD0MIZcbbSq9NEcCUhpRSlGgVSzJoFkdAptPjdDYywnV9lChoBmgJaA9DCGagMv59BgPAlIaUUpRoFUsyaBZHQKbTpYvFm4B1fZQoaAZoCWgPQwguc7osJlYHwJSGlFKUaBVLMmgWR0Cm02kMkQf7dX2UKGgGaAloD0MIrU85JovbB8CUhpRSlGgVSzJoFkdAptMpdpqREHV9lChoBmgJaA9DCD25pkBmZwfAlIaUUpRoFUsyaBZHQKbUzUo8ZDR1fZQoaAZoCWgPQwgUIuAQqhQRwJSGlFKUaBVLMmgWR0Cm1I/+85CGdX2UKGgGaAloD0MIdAexM4VuBsCUhpRSlGgVSzJoFkdAptRTu6VdHHV9lChoBmgJaA9DCChFK/cCswfAlIaUUpRoFUsyaBZHQKbUFHVf/m11fZQoaAZoCWgPQwh7+gj84ccDwJSGlFKUaBVLMmgWR0Cm1benZTQ3dX2UKGgGaAloD0MIshLzrKQFEMCUhpRSlGgVSzJoFkdAptV6FRHf/HV9lChoBmgJaA9DCNx++WTFEBDAlIaUUpRoFUsyaBZHQKbVPYbsF+x1fZQoaAZoCWgPQwhzE7U0t6IKwJSGlFKUaBVLMmgWR0Cm1P3dTHbRdX2UKGgGaAloD0MIpwaaz7kbCMCUhpRSlGgVSzJoFkdAptaj/uLJjnV9lChoBmgJaA9DCLDIrx9iwwbAlIaUUpRoFUsyaBZHQKbWZhScbzd1fZQoaAZoCWgPQwjLLEKxFVQIwJSGlFKUaBVLMmgWR0Cm1ikRzzVddX2UKGgGaAloD0MIqP+s+fF3CMCUhpRSlGgVSzJoFkdAptXo/JNj9XV9lChoBmgJaA9DCNXo1QClIQjAlIaUUpRoFUsyaBZHQKbXjA9FF2F1fZQoaAZoCWgPQwjdXz3uW40CwJSGlFKUaBVLMmgWR0Cm1048EFGHdX2UKGgGaAloD0MIajS5GAMLCMCUhpRSlGgVSzJoFkdAptcRjQRf4XV9lChoBmgJaA9DCLyWkA96lgzAlIaUUpRoFUsyaBZHQKbW0aLGaQV1fZQoaAZoCWgPQwijzAaZZKQDwJSGlFKUaBVLMmgWR0Cm2HJKJ2t/dX2UKGgGaAloD0MIT5KumXzTB8CUhpRSlGgVSzJoFkdAptg0l5WzW3V9lChoBmgJaA9DCCDrqdVX1wvAlIaUUpRoFUsyaBZHQKbX94+r2g51fZQoaAZoCWgPQwjVQV4PJuUSwJSGlFKUaBVLMmgWR0Cm17e2uxKQdX2UKGgGaAloD0MI7Sk5J/awCMCUhpRSlGgVSzJoFkdAptllwFTvRnV9lChoBmgJaA9DCPCK4H8rOQXAlIaUUpRoFUsyaBZHQKbZKCKaXrt1fZQoaAZoCWgPQwh6UbtfBTgJwJSGlFKUaBVLMmgWR0Cm2OskIHC5dX2UKGgGaAloD0MI2LeTiPBPBcCUhpRSlGgVSzJoFkdAptirC+De03V9lChoBmgJaA9DCO0seqcCLg3AlIaUUpRoFUsyaBZHQKbaT+ee4Cp1fZQoaAZoCWgPQwgJVP8gkiELwJSGlFKUaBVLMmgWR0Cm2hJG4I8hdX2UKGgGaAloD0MIwOszZ31KDsCUhpRSlGgVSzJoFkdAptnVS88La3V9lChoBmgJaA9DCH+D9urjwQnAlIaUUpRoFUsyaBZHQKbZlaAWi111fZQoaAZoCWgPQwjtR4rIsCoLwJSGlFKUaBVLMmgWR0Cm2zyDh99ddX2UKGgGaAloD0MIzxWlhGDFEMCUhpRSlGgVSzJoFkdAptr+4ZuQ63V9lChoBmgJaA9DCCtpxTcUHgzAlIaUUpRoFUsyaBZHQKbawfjCHh11fZQoaAZoCWgPQwg5nPnVHGANwJSGlFKUaBVLMmgWR0Cm2oHWattAdX2UKGgGaAloD0MIEAaeew+XBMCUhpRSlGgVSzJoFkdAptwhJVbRnnV9lChoBmgJaA9DCAnf+xu0Fw7AlIaUUpRoFUsyaBZHQKbb40WM0gt1fZQoaAZoCWgPQwhYWdsUj8sHwJSGlFKUaBVLMmgWR0Cm26ZPdl/ZdX2UKGgGaAloD0MInl2+9WEdAcCUhpRSlGgVSzJoFkdApttmcQRPGnV9lChoBmgJaA9DCFt8CoDx3BPAlIaUUpRoFUsyaBZHQKbdCOjqOcV1fZQoaAZoCWgPQwiTNlX3yAYLwJSGlFKUaBVLMmgWR0Cm3MsMAmzCdX2UKGgGaAloD0MInWfsSzb+A8CUhpRSlGgVSzJoFkdAptyOHWSU1XV9lChoBmgJaA9DCFUyAFRx8xLAlIaUUpRoFUsyaBZHQKbcTihnJ1d1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82fc882a9013ad7d914a66fbaab5eb2ac2e05dd051434c7e80a3d3f62b992f7d
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d7b06862ed8dfa9516d0a6915b01648841bbdb5355bfeb9e03a49c414b9ef82
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1ace5dd430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1ace5dbd40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679245059865863500, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjPLHPiF/nLw6Wg0/jPLHPiF/nLw6Wg0/jPLHPiF/nLw6Wg0/jPLHPiF/nLw6Wg0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATfZWv/zIzz4zKcK/sHv9vpm7Pz+m+cu/sPxbvxBGvb8MSb68HuVVPjFm0z8bg8i+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACM8sc+IX+cvDpaDT88+ly8a/deuzRQA7yM8sc+IX+cvDpaDT88+ly8a/deuzRQA7yM8sc+IX+cvDpaDT88+ly8a/deuzRQA7yM8sc+IX+cvDpaDT88+ly8a/deuzRQA7yUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.39052236 -0.01910359 0.552158 ]\n [ 0.39052236 -0.01910359 0.552158 ]\n [ 0.39052236 -0.01910359 0.552158 ]\n [ 0.39052236 -0.01910359 0.552158 ]]", "desired_goal": "[[-0.83969575 0.40583026 -1.5168823 ]\n [-0.4950843 0.74895626 -1.5935562 ]\n [-0.85932446 -1.4787006 -0.02322819]\n [ 0.20888183 1.6515561 -0.39162526]]", "observation": "[[ 0.39052236 -0.01910359 0.552158 -0.01348739 -0.0034022 -0.00801473]\n [ 0.39052236 -0.01910359 0.552158 -0.01348739 -0.0034022 -0.00801473]\n [ 0.39052236 -0.01910359 0.552158 -0.01348739 -0.0034022 -0.00801473]\n [ 0.39052236 -0.01910359 0.552158 -0.01348739 -0.0034022 -0.00801473]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAZhnvPA1UQb2i0s49JJMSPRE71b3GUyk+7Ycuuo/shLuXx0U9P4pfPHmmg70c5mw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02918692 -0.0471993 0.10098769]\n [ 0.03578486 -0.10411657 0.16535863]\n [-0.00066578 -0.00405652 0.04828605]\n [ 0.0136438 -0.06428237 0.23134655]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIU0FF1a+0DcCUhpRSlIwBbJRLMowBdJRHQKbETGiHqNZ1fZQoaAZoCWgPQwgXf9sTJDYAwJSGlFKUaBVLMmgWR0CmxA8T8HfNdX2UKGgGaAloD0MIrz4e+u72C8CUhpRSlGgVSzJoFkdApsPS02LpA3V9lChoBmgJaA9DCFa6u86GnATAlIaUUpRoFUsyaBZHQKbDk8jiXIF1fZQoaAZoCWgPQwiqSIWxheAIwJSGlFKUaBVLMmgWR0Cmxe/b9If9dX2UKGgGaAloD0MIJQSr6uW3BsCUhpRSlGgVSzJoFkdApsWzAzpHJHV9lChoBmgJaA9DCO84RUdy2QvAlIaUUpRoFUsyaBZHQKbFdzzVc2R1fZQoaAZoCWgPQwgMlBRYALMLwJSGlFKUaBVLMmgWR0CmxThybQTmdX2UKGgGaAloD0MIh913DI89BcCUhpRSlGgVSzJoFkdApsejBO58SnV9lChoBmgJaA9DCLO3lPPFvhDAlIaUUpRoFUsyaBZHQKbHZmK64Dt1fZQoaAZoCWgPQwhmho2yfnMNwJSGlFKUaBVLMmgWR0CmxypPZZjhdX2UKGgGaAloD0MIqyaIug9gD8CUhpRSlGgVSzJoFkdApsbrAgxJunV9lChoBmgJaA9DCLdFmQ0yaQXAlIaUUpRoFUsyaBZHQKbJQFIuoP11fZQoaAZoCWgPQwg0n3O364UDwJSGlFKUaBVLMmgWR0CmyQNWEK3NdX2UKGgGaAloD0MI5zbhXpmXCMCUhpRSlGgVSzJoFkdApsjHpKSPl3V9lChoBmgJaA9DCOwuUFJggQrAlIaUUpRoFUsyaBZHQKbIiB3A2yd1fZQoaAZoCWgPQwidEaW9wbcGwJSGlFKUaBVLMmgWR0Cmyqyi22G7dX2UKGgGaAloD0MI8gpET8pkCMCUhpRSlGgVSzJoFkdApspuvIOpbXV9lChoBmgJaA9DCBiw5CoWvwzAlIaUUpRoFUsyaBZHQKbKMd8Rcu91fZQoaAZoCWgPQwh1q+ek980AwJSGlFKUaBVLMmgWR0CmyfG96C17dX2UKGgGaAloD0MIH/gYrDi1CMCUhpRSlGgVSzJoFkdApsuihpQDWHV9lChoBmgJaA9DCDElkuhltALAlIaUUpRoFUsyaBZHQKbLZJ4jbBZ1fZQoaAZoCWgPQwgc6ndha3YIwJSGlFKUaBVLMmgWR0Cmyye/xlQNdX2UKGgGaAloD0MI3enOE895C8CUhpRSlGgVSzJoFkdApsrnxYq5LHV9lChoBmgJaA9DCCAJ+3YSMQjAlIaUUpRoFUsyaBZHQKbMkGVzIWB1fZQoaAZoCWgPQwhfRrHc0uoFwJSGlFKUaBVLMmgWR0CmzFKZ2IO6dX2UKGgGaAloD0MIpfW3BODfB8CUhpRSlGgVSzJoFkdApswVnscABHV9lChoBmgJaA9DCJ86Vik9cwbAlIaUUpRoFUsyaBZHQKbL1as6q811fZQoaAZoCWgPQwi8V61M+KUFwJSGlFKUaBVLMmgWR0CmzXyY5T60dX2UKGgGaAloD0MI0sPQ6uQMBsCUhpRSlGgVSzJoFkdAps0+njyWiXV9lChoBmgJaA9DCJj4o6gzdwzAlIaUUpRoFUsyaBZHQKbNAZhrnDB1fZQoaAZoCWgPQwgUzm4tkwEHwJSGlFKUaBVLMmgWR0CmzMFvQ4S6dX2UKGgGaAloD0MICcGqevl9CMCUhpRSlGgVSzJoFkdAps5iLOzIFXV9lChoBmgJaA9DCA01CklmtQTAlIaUUpRoFUsyaBZHQKbOJHJcPe51fZQoaAZoCWgPQwjkSdI1ky8NwJSGlFKUaBVLMmgWR0CmzeeNtIkJdX2UKGgGaAloD0MIe4fboWFRBMCUhpRSlGgVSzJoFkdAps2ndGiHqXV9lChoBmgJaA9DCB+94T5yawrAlIaUUpRoFUsyaBZHQKbPS4MF2V51fZQoaAZoCWgPQwgMdy6M9LISwJSGlFKUaBVLMmgWR0Cmzw2Vu76IdX2UKGgGaAloD0MI6kDWU6vPDsCUhpRSlGgVSzJoFkdAps7QrYoRZnV9lChoBmgJaA9DCAMJih9jbgXAlIaUUpRoFUsyaBZHQKbOkJ2t+1B1fZQoaAZoCWgPQwj59q5BX3oNwJSGlFKUaBVLMmgWR0Cm0DYtQKrrdX2UKGgGaAloD0MIaRoUzQO4DMCUhpRSlGgVSzJoFkdAps/4UFjd6HV9lChoBmgJaA9DCKiq0EAsOwLAlIaUUpRoFUsyaBZHQKbPu4Ia99N1fZQoaAZoCWgPQwjx8nSuKGUKwJSGlFKUaBVLMmgWR0Cmz3uZCv5hdX2UKGgGaAloD0MIqYb9nlgHB8CUhpRSlGgVSzJoFkdAptEgYNy5qnV9lChoBmgJaA9DCFXbTfBNUwjAlIaUUpRoFUsyaBZHQKbQ4nm7rcF1fZQoaAZoCWgPQwipvYi2Y6r/v5SGlFKUaBVLMmgWR0Cm0KWsijcmdX2UKGgGaAloD0MIvXMoQ1UMCMCUhpRSlGgVSzJoFkdAptBlmOEM9nV9lChoBmgJaA9DCJ3YQ/tY4QfAlIaUUpRoFUsyaBZHQKbSBOfNA1N1fZQoaAZoCWgPQwik3lM57ckFwJSGlFKUaBVLMmgWR0Cm0cdn9NvgdX2UKGgGaAloD0MIJF6ezhUFBcCUhpRSlGgVSzJoFkdAptGKgkC3gHV9lChoBmgJaA9DCB4X1SKiWATAlIaUUpRoFUsyaBZHQKbRSmuTzNF1fZQoaAZoCWgPQwjQfM7drvcIwJSGlFKUaBVLMmgWR0Cm0vyQ5myxdX2UKGgGaAloD0MIMo6R7BGqBsCUhpRSlGgVSzJoFkdAptK+oo/iYXV9lChoBmgJaA9DCKK2DaMgCBLAlIaUUpRoFUsyaBZHQKbSgbF0gbJ1fZQoaAZoCWgPQwgZdhiT/t4JwJSGlFKUaBVLMmgWR0Cm0kG2CulodX2UKGgGaAloD0MIZcbbSq9NEcCUhpRSlGgVSzJoFkdAptPjdDYywnV9lChoBmgJaA9DCGagMv59BgPAlIaUUpRoFUsyaBZHQKbTpYvFm4B1fZQoaAZoCWgPQwguc7osJlYHwJSGlFKUaBVLMmgWR0Cm02kMkQf7dX2UKGgGaAloD0MIrU85JovbB8CUhpRSlGgVSzJoFkdAptMpdpqREHV9lChoBmgJaA9DCD25pkBmZwfAlIaUUpRoFUsyaBZHQKbUzUo8ZDR1fZQoaAZoCWgPQwgUIuAQqhQRwJSGlFKUaBVLMmgWR0Cm1I/+85CGdX2UKGgGaAloD0MIdAexM4VuBsCUhpRSlGgVSzJoFkdAptRTu6VdHHV9lChoBmgJaA9DCChFK/cCswfAlIaUUpRoFUsyaBZHQKbUFHVf/m11fZQoaAZoCWgPQwh7+gj84ccDwJSGlFKUaBVLMmgWR0Cm1benZTQ3dX2UKGgGaAloD0MIshLzrKQFEMCUhpRSlGgVSzJoFkdAptV6FRHf/HV9lChoBmgJaA9DCNx++WTFEBDAlIaUUpRoFUsyaBZHQKbVPYbsF+x1fZQoaAZoCWgPQwhzE7U0t6IKwJSGlFKUaBVLMmgWR0Cm1P3dTHbRdX2UKGgGaAloD0MIpwaaz7kbCMCUhpRSlGgVSzJoFkdAptaj/uLJjnV9lChoBmgJaA9DCLDIrx9iwwbAlIaUUpRoFUsyaBZHQKbWZhScbzd1fZQoaAZoCWgPQwjLLEKxFVQIwJSGlFKUaBVLMmgWR0Cm1ikRzzVddX2UKGgGaAloD0MIqP+s+fF3CMCUhpRSlGgVSzJoFkdAptXo/JNj9XV9lChoBmgJaA9DCNXo1QClIQjAlIaUUpRoFUsyaBZHQKbXjA9FF2F1fZQoaAZoCWgPQwjdXz3uW40CwJSGlFKUaBVLMmgWR0Cm1048EFGHdX2UKGgGaAloD0MIajS5GAMLCMCUhpRSlGgVSzJoFkdAptcRjQRf4XV9lChoBmgJaA9DCLyWkA96lgzAlIaUUpRoFUsyaBZHQKbW0aLGaQV1fZQoaAZoCWgPQwijzAaZZKQDwJSGlFKUaBVLMmgWR0Cm2HJKJ2t/dX2UKGgGaAloD0MIT5KumXzTB8CUhpRSlGgVSzJoFkdAptg0l5WzW3V9lChoBmgJaA9DCCDrqdVX1wvAlIaUUpRoFUsyaBZHQKbX94+r2g51fZQoaAZoCWgPQwjVQV4PJuUSwJSGlFKUaBVLMmgWR0Cm17e2uxKQdX2UKGgGaAloD0MI7Sk5J/awCMCUhpRSlGgVSzJoFkdAptllwFTvRnV9lChoBmgJaA9DCPCK4H8rOQXAlIaUUpRoFUsyaBZHQKbZKCKaXrt1fZQoaAZoCWgPQwh6UbtfBTgJwJSGlFKUaBVLMmgWR0Cm2OskIHC5dX2UKGgGaAloD0MI2LeTiPBPBcCUhpRSlGgVSzJoFkdAptirC+De03V9lChoBmgJaA9DCO0seqcCLg3AlIaUUpRoFUsyaBZHQKbaT+ee4Cp1fZQoaAZoCWgPQwgJVP8gkiELwJSGlFKUaBVLMmgWR0Cm2hJG4I8hdX2UKGgGaAloD0MIwOszZ31KDsCUhpRSlGgVSzJoFkdAptnVS88La3V9lChoBmgJaA9DCH+D9urjwQnAlIaUUpRoFUsyaBZHQKbZlaAWi111fZQoaAZoCWgPQwjtR4rIsCoLwJSGlFKUaBVLMmgWR0Cm2zyDh99ddX2UKGgGaAloD0MIzxWlhGDFEMCUhpRSlGgVSzJoFkdAptr+4ZuQ63V9lChoBmgJaA9DCCtpxTcUHgzAlIaUUpRoFUsyaBZHQKbawfjCHh11fZQoaAZoCWgPQwg5nPnVHGANwJSGlFKUaBVLMmgWR0Cm2oHWattAdX2UKGgGaAloD0MIEAaeew+XBMCUhpRSlGgVSzJoFkdAptwhJVbRnnV9lChoBmgJaA9DCAnf+xu0Fw7AlIaUUpRoFUsyaBZHQKbb40WM0gt1fZQoaAZoCWgPQwhYWdsUj8sHwJSGlFKUaBVLMmgWR0Cm26ZPdl/ZdX2UKGgGaAloD0MInl2+9WEdAcCUhpRSlGgVSzJoFkdApttmcQRPGnV9lChoBmgJaA9DCFt8CoDx3BPAlIaUUpRoFUsyaBZHQKbdCOjqOcV1fZQoaAZoCWgPQwiTNlX3yAYLwJSGlFKUaBVLMmgWR0Cm3MsMAmzCdX2UKGgGaAloD0MInWfsSzb+A8CUhpRSlGgVSzJoFkdAptyOHWSU1XV9lChoBmgJaA9DCFUyAFRx8xLAlIaUUpRoFUsyaBZHQKbcTihnJ1d1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (812 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -3.6144708069972693, "std_reward": 0.9189919476727202, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T17:46:31.331357"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53850e6b42c3d3330921a4db27c8fa739ca5b38e2980520a3eeda0818d15dd50
3
+ size 3056