# Model Card for CodeFuse-13B-4K ![Creation Approach](LOGO.png) [[中文]](#chinese) [[English]](#english) ## Model Description CodeFuse-13B is a 13 billion parameter code generation model trained on the GPT-NeoX framework, capable of handling code sequences of up to 4096 characters. This model was pretrained on a dataset consisting of 1000B token code, Chinese, and English data, covering over 40 programming languages. To further enhance the effectiveness and quality of the generated code, the model was fine-tuned on the CodeFuse-Evol-instruction-66k dataset, enabling it to produce more accurate, efficient, and compliant code. Pass@1 achieved 37.1% on the HumanEval evaluation set(BeamSearch strategy, BeamSize=3). ## Requirements * Python 3.8 or above. * PyTorch 1.12 or above, with a recommendation for 2.0 or above. * Transformers 4.24.0 or above. * It is advisable to use CUDA 11.4 or above (for GPU users and flash-attention users, this option should be considered). ## Quickstart ``` import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("CodeFuse-13B") model = AutoModelForCausalLM.from_pretrained("CodeFuse-13B", torch_dtype="auto", device_map="auto") input_ids = encode("def quick_sort(array):\n", return_tensors="pt") output_ids = model.generate(input_ids, max_new_tokens=200, num_beams=3, num_return_sequences=1, repetition_penalty=1.2) print(tokenizer.decode(output_idss[0])) ``` ## 简介 CodeFuse-13B是基于GPT-NeoX框架训练的13B参数代码生成模型,能够处理4096个字符的代码序列。该模型在1000B Token的代码、中文、英文数据数据集上进行预训练,覆盖超过40种编程语言。为了进一步提升生成代码的效果和质量,该模型还在CodeFuse-Evol-instruction-66k数据集上进行了微调,使得该模型能够生成更加准确、高效、符合要求的代码。在HumanEval评测集上Pass@1达到37.1%(采用BeamSearch解码,其中BeamSize=3)。 ## 要求 * python 3.8及以上版本 * pytorch 1.12及以上版本,推荐2.0及以上版本 * transformers 4.24.0及以上版本 * 建议使用CUDA 11.4及以上(GPU用户、flash-attention用户等需考虑此选 ## 快速使用 ``` import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("CodeFuse-13B") model = AutoModelForCausalLM.from_pretrained("CodeFuse-13B", torch_dtype="auto", device_map="auto") input_ids = encode("def quick_sort(array):\n", return_tensors="pt") output_ids = model.generate(input_ids, max_new_tokens=200, num_beams=3, num_return_sequences=1, repetition_penalty=1.2) print(tokenizer.decode(output_idss[0])) ```