codemogul commited on
Commit
1910b38
·
1 Parent(s): 1cfcb1a

Initial deployment

Browse files
Files changed (2) hide show
  1. data.csv +0 -0
  2. model.ipynb +114 -0
data.csv ADDED
The diff for this file is too large to render. See raw diff
 
model.ipynb ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 15,
6
+ "id": "ace57031",
7
+ "metadata": {},
8
+ "outputs": [
9
+ {
10
+ "name": "stdout",
11
+ "output_type": "stream",
12
+ "text": [
13
+ "Accuracy: 0.023255813953488372\n",
14
+ "Prediction: [' is a member of the BC Partners for Mental Health and Addictions Information. The institute is dedicated to the study of substance use in support of community-wide efforts aimed at providing all people with access to healthier lives']\n"
15
+ ]
16
+ }
17
+ ],
18
+ "source": [
19
+ "from sklearn.feature_extraction.text import TfidfVectorizer\n",
20
+ "from sklearn.model_selection import train_test_split\n",
21
+ "from sklearn.linear_model import LogisticRegression\n",
22
+ "from sklearn.metrics import accuracy_score\n",
23
+ "\n",
24
+ "# Step 1: Collect and preprocess data\n",
25
+ "# Get all the questions from Questions column and responses from Questions column in the dataset data.csv\n",
26
+ "# questions = data[\"Questions\"].tolist()\n",
27
+ "# responses = data[\"Responses\"].tolist()\n",
28
+ "questions = []\n",
29
+ "responses = []\n",
30
+ "q_id = []\n",
31
+ "with open(\"data.csv\", \"r\") as f:\n",
32
+ " for line in f:\n",
33
+ " \n",
34
+ " array = line.split(\",\") \n",
35
+ " # questions.append(question)\n",
36
+ " # responses.append(response)\n",
37
+ " # q_id.append(question_id)\n",
38
+ " try:\n",
39
+ " question = array[1]\n",
40
+ " response = array[2]\n",
41
+ " question_id = array[0]\n",
42
+ " questions.append(question)\n",
43
+ " responses.append(response)\n",
44
+ " q_id.append(question_id)\n",
45
+ " except:\n",
46
+ " pass\n",
47
+ "\n",
48
+ "\n",
49
+ " \n",
50
+ "\n",
51
+ "# print(questions)\n",
52
+ "# print(responses)\n",
53
+ "\n",
54
+ "\n",
55
+ "# questions = [\"What are some symptoms of depression?\",\n",
56
+ "# \"How can I manage my anxiety?\",\n",
57
+ "# \"What are the treatments for bipolar disorder?\"]\n",
58
+ "# responses = [\"Symptoms of depression include sadness, lack of energy, and loss of interest in activities.\",\n",
59
+ "# \"You can manage your anxiety through techniques such as deep breathing, meditation, and therapy.\",\n",
60
+ "# \"Treatments for bipolar disorder include medication, therapy, and lifestyle changes.\"]\n",
61
+ "\n",
62
+ "vectorizer = TfidfVectorizer()\n",
63
+ "X = vectorizer.fit_transform(questions)\n",
64
+ "y = responses\n",
65
+ "\n",
66
+ "# Step 2: Split data into training and testing sets\n",
67
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)\n",
68
+ "\n",
69
+ "# Step 3: Choose a machine learning algorithm\n",
70
+ "model = LogisticRegression()\n",
71
+ "\n",
72
+ "# Step 4: Train the model\n",
73
+ "model.fit(X_train, y_train)\n",
74
+ "\n",
75
+ "# Step 5: Evaluate the model\n",
76
+ "y_pred = model.predict(X_test)\n",
77
+ "accuracy = accuracy_score(y_test, y_pred)\n",
78
+ "print(\"Accuracy:\", accuracy)\n",
79
+ "\n",
80
+ "# Step 6: Use the model to make predictions\n",
81
+ "new_question = \"I feel sad\"\n",
82
+ "new_question_vector = vectorizer.transform([new_question])\n",
83
+ "prediction = model.predict(new_question_vector)\n",
84
+ "print(\"Prediction:\", prediction)\n"
85
+ ]
86
+ }
87
+ ],
88
+ "metadata": {
89
+ "kernelspec": {
90
+ "display_name": "Python 3",
91
+ "language": "python",
92
+ "name": "python3"
93
+ },
94
+ "language_info": {
95
+ "codemirror_mode": {
96
+ "name": "ipython",
97
+ "version": 3
98
+ },
99
+ "file_extension": ".py",
100
+ "mimetype": "text/x-python",
101
+ "name": "python",
102
+ "nbconvert_exporter": "python",
103
+ "pygments_lexer": "ipython3",
104
+ "version": "3.10.7"
105
+ },
106
+ "vscode": {
107
+ "interpreter": {
108
+ "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6"
109
+ }
110
+ }
111
+ },
112
+ "nbformat": 4,
113
+ "nbformat_minor": 5
114
+ }