File size: 1,800 Bytes
c837a62
 
 
 
1a4db42
 
 
 
 
 
 
 
 
 
86c4da5
1a4db42
86c4da5
1a4db42
86c4da5
1a4db42
 
86c4da5
1a4db42
 
 
86c4da5
1a4db42
 
86c4da5
26f0892
 
1a4db42
26f0892
 
 
 
1a4db42
86c4da5
1a4db42
 
20da600
26f0892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a4db42
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
instance_prompt: DHANUSH
---

# Tugce_Flux

Trained on Replicate using:

https://replicate.com/ostris/flux-dev-lora-trainer/train


## Trigger words
You should use `tugce` to trigger the image generation.


## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)

```py
from fastapi import FastAPI, HTTPException
from fastapi.responses import FileResponse
import torch
from diffusers import AutoPipelineForText2Image
import io

app = FastAPI()

# Model ve LoRA'yı yükle
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('codermert/tugce2-lora', weight_name='flux_train_replicate.safetensors')

@app.post("/generate_image")
async def generate_image(prompt: str, width: int, height: int):
    try:
        image = pipeline(
            prompt,
            width=width,
            height=height
        ).images[0]
        
        img_byte_arr = io.BytesIO()
        image.save(img_byte_arr, format='PNG')
        img_byte_arr.seek(0)
        
        return FileResponse(img_byte_arr, media_type="image/png")
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)
```

For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)