File size: 1,560 Bytes
c837a62 1a4db42 86c4da5 1a4db42 86c4da5 1a4db42 86c4da5 1a4db42 86c4da5 1a4db42 86c4da5 1a4db42 86c4da5 1a4db42 86c4da5 1a4db42 20da600 86c4da5 20da600 86c4da5 20da600 86c4da5 20da600 86c4da5 20da600 86c4da5 20da600 86c4da5 1a4db42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
instance_prompt: DHANUSH
---
# Tugce_Flux
Trained on Replicate using:
https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `tugce` to trigger the image generation.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
# Model ve LoRA'yı yükle
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('codermert/tugce2-lora', weight_name='flux_train_replicate.safetensors')
# Farklı boyutlar
sizes = [
(512, 512), # 1:1
(768, 512), # 3:2
(640, 480), # 4:3
(896, 504), # 16:9
]
# Prompt
prompt = "tugce in a beautiful garden"
# Her boyut için görüntü oluştur
for width, height in sizes:
image = pipeline(
prompt,
width=width,
height=height
).images[0]
# Görüntüyü kaydet
image.save(f"tugce_{width}x{height}.png")
print(f"Oluşturuldu: tugce_{width}x{height}.png")
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) |