codersan commited on
Commit
5854e6c
·
verified ·
1 Parent(s): 1ff8596

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,497 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:172826
8
+ - loss:CosineSimilarityLoss
9
+ base_model: intfloat/multilingual-e5-small
10
+ widget:
11
+ - source_sentence: How do you make Yahoo your homepage?
12
+ sentences:
13
+ - چگونه ویکی پدیا بدون تبلیغ در وب سایت خود درآمد کسب می کند؟
14
+ - چگونه می توانم برای امتحان INS 21 آماده شوم؟
15
+ - How can I make Yahoo my homepage on my browser?
16
+ - source_sentence: کدام VPN رایگان در چین کار می کند؟
17
+ sentences:
18
+ - VPN های رایگان که در چین کار می کنند چیست؟
19
+ - How can I stop masturbations?
20
+ - آیا مدرسه خلاقیت را می کشد؟
21
+ - source_sentence: چند روش خوب برای کاهش وزن چیست؟
22
+ sentences:
23
+ - چگونه می توانم یک کتاب خوب بنویسم؟
24
+ - من اضافه وزن دارمچگونه می توانم وزن کم کنم؟
25
+ - آیا می توانید ببینید چه کسی داستانهای اینستاگرام شما را مشاهده می کند؟
26
+ - source_sentence: چگونه می توان یک Dell Inspiron 1525 را به تنظیمات کارخانه بازگرداند؟
27
+ sentences:
28
+ - چگونه می توان یک Dell Inspiron B130 را به تنظیمات کارخانه بازگرداند؟
29
+ - مبدل چیست؟
30
+ - چگونه زندگی شما بعد از تشخیص HIV مثبت تغییر کرد؟
31
+ - source_sentence: داشتن هزاران دنبال کننده در Quora چگونه است؟
32
+ sentences:
33
+ - چگونه Airprint HP OfficeJet 4620 با HP LaserJet Enterprise M606X مقایسه می شود؟
34
+ - چه چیزی است که ده ها هزار دنبال کننده در Quora داشته باشید؟
35
+ - اگر هند واردات همه محصولات چینی را ممنوع کند ، چه می شود؟
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ ---
39
+
40
+ # SentenceTransformer based on intfloat/multilingual-e5-small
41
+
42
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** Sentence Transformer
48
+ - **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision c007d7ef6fd86656326059b28395a7a03a7c5846 -->
49
+ - **Maximum Sequence Length:** 512 tokens
50
+ - **Output Dimensionality:** 384 dimensions
51
+ - **Similarity Function:** Cosine Similarity
52
+ <!-- - **Training Dataset:** Unknown -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
59
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
60
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
61
+
62
+ ### Full Model Architecture
63
+
64
+ ```
65
+ SentenceTransformer(
66
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
67
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
68
+ (2): Normalize()
69
+ )
70
+ ```
71
+
72
+ ## Usage
73
+
74
+ ### Direct Usage (Sentence Transformers)
75
+
76
+ First install the Sentence Transformers library:
77
+
78
+ ```bash
79
+ pip install -U sentence-transformers
80
+ ```
81
+
82
+ Then you can load this model and run inference.
83
+ ```python
84
+ from sentence_transformers import SentenceTransformer
85
+
86
+ # Download from the 🤗 Hub
87
+ model = SentenceTransformer("codersan/validadted_e5smallStudent")
88
+ # Run inference
89
+ sentences = [
90
+ 'داشتن هزاران دنبال کننده در Quora چگونه است؟',
91
+ 'چه چیزی است که ده ها هزار دنبال کننده در Quora داشته باشید؟',
92
+ 'چگونه Airprint HP OfficeJet 4620 با HP LaserJet Enterprise M606X مقایسه می شود؟',
93
+ ]
94
+ embeddings = model.encode(sentences)
95
+ print(embeddings.shape)
96
+ # [3, 384]
97
+
98
+ # Get the similarity scores for the embeddings
99
+ similarities = model.similarity(embeddings, embeddings)
100
+ print(similarities.shape)
101
+ # [3, 3]
102
+ ```
103
+
104
+ <!--
105
+ ### Direct Usage (Transformers)
106
+
107
+ <details><summary>Click to see the direct usage in Transformers</summary>
108
+
109
+ </details>
110
+ -->
111
+
112
+ <!--
113
+ ### Downstream Usage (Sentence Transformers)
114
+
115
+ You can finetune this model on your own dataset.
116
+
117
+ <details><summary>Click to expand</summary>
118
+
119
+ </details>
120
+ -->
121
+
122
+ <!--
123
+ ### Out-of-Scope Use
124
+
125
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
126
+ -->
127
+
128
+ <!--
129
+ ## Bias, Risks and Limitations
130
+
131
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
132
+ -->
133
+
134
+ <!--
135
+ ### Recommendations
136
+
137
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
138
+ -->
139
+
140
+ ## Training Details
141
+
142
+ ### Training Dataset
143
+
144
+ #### Unnamed Dataset
145
+
146
+
147
+ * Size: 172,826 training samples
148
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
149
+ * Approximate statistics based on the first 1000 samples:
150
+ | | sentence1 | sentence2 | score |
151
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------|
152
+ | type | string | string | float |
153
+ | details | <ul><li>min: 6 tokens</li><li>mean: 16.19 tokens</li><li>max: 84 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.5 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 0.73</li><li>mean: 0.94</li><li>max: 1.0</li></ul> |
154
+ * Samples:
155
+ | sentence1 | sentence2 | score |
156
+ |:-------------------------------------------------------------------|:---------------------------------------------------------------|:--------------------------------|
157
+ | <code>تفاوت بین تحلیلگر تحقیقات بازار و تحلیلگر تجارت چیست؟</code> | <code>تفاوت بین تحقیقات بازاریابی و تحلیلگر تجارت چیست؟</code> | <code>0.9806554317474365</code> |
158
+ | <code>خوردن چه چیزی باعث دل درد میشود؟</code> | <code>چه چیزی باعث رفع دل درد میشود؟</code> | <code>0.9417070150375366</code> |
159
+ | <code>بهترین نرم افزار ویرایش ویدیویی کدام است؟</code> | <code>بهترین نرم افزار برای ویرایش ویدیو چیست؟</code> | <code>0.9928616285324097</code> |
160
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
161
+ ```json
162
+ {
163
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
164
+ }
165
+ ```
166
+
167
+ ### Training Hyperparameters
168
+ #### Non-Default Hyperparameters
169
+
170
+ - `eval_strategy`: steps
171
+ - `per_device_train_batch_size`: 12
172
+ - `learning_rate`: 5e-06
173
+ - `weight_decay`: 0.01
174
+ - `num_train_epochs`: 1
175
+ - `warmup_ratio`: 0.1
176
+ - `push_to_hub`: True
177
+ - `hub_model_id`: codersan/validadted_e5smallStudent
178
+ - `eval_on_start`: True
179
+ - `batch_sampler`: no_duplicates
180
+
181
+ #### All Hyperparameters
182
+ <details><summary>Click to expand</summary>
183
+
184
+ - `overwrite_output_dir`: False
185
+ - `do_predict`: False
186
+ - `eval_strategy`: steps
187
+ - `prediction_loss_only`: True
188
+ - `per_device_train_batch_size`: 12
189
+ - `per_device_eval_batch_size`: 8
190
+ - `per_gpu_train_batch_size`: None
191
+ - `per_gpu_eval_batch_size`: None
192
+ - `gradient_accumulation_steps`: 1
193
+ - `eval_accumulation_steps`: None
194
+ - `torch_empty_cache_steps`: None
195
+ - `learning_rate`: 5e-06
196
+ - `weight_decay`: 0.01
197
+ - `adam_beta1`: 0.9
198
+ - `adam_beta2`: 0.999
199
+ - `adam_epsilon`: 1e-08
200
+ - `max_grad_norm`: 1
201
+ - `num_train_epochs`: 1
202
+ - `max_steps`: -1
203
+ - `lr_scheduler_type`: linear
204
+ - `lr_scheduler_kwargs`: {}
205
+ - `warmup_ratio`: 0.1
206
+ - `warmup_steps`: 0
207
+ - `log_level`: passive
208
+ - `log_level_replica`: warning
209
+ - `log_on_each_node`: True
210
+ - `logging_nan_inf_filter`: True
211
+ - `save_safetensors`: True
212
+ - `save_on_each_node`: False
213
+ - `save_only_model`: False
214
+ - `restore_callback_states_from_checkpoint`: False
215
+ - `no_cuda`: False
216
+ - `use_cpu`: False
217
+ - `use_mps_device`: False
218
+ - `seed`: 42
219
+ - `data_seed`: None
220
+ - `jit_mode_eval`: False
221
+ - `use_ipex`: False
222
+ - `bf16`: False
223
+ - `fp16`: False
224
+ - `fp16_opt_level`: O1
225
+ - `half_precision_backend`: auto
226
+ - `bf16_full_eval`: False
227
+ - `fp16_full_eval`: False
228
+ - `tf32`: None
229
+ - `local_rank`: 0
230
+ - `ddp_backend`: None
231
+ - `tpu_num_cores`: None
232
+ - `tpu_metrics_debug`: False
233
+ - `debug`: []
234
+ - `dataloader_drop_last`: False
235
+ - `dataloader_num_workers`: 0
236
+ - `dataloader_prefetch_factor`: None
237
+ - `past_index`: -1
238
+ - `disable_tqdm`: False
239
+ - `remove_unused_columns`: True
240
+ - `label_names`: None
241
+ - `load_best_model_at_end`: False
242
+ - `ignore_data_skip`: False
243
+ - `fsdp`: []
244
+ - `fsdp_min_num_params`: 0
245
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
246
+ - `fsdp_transformer_layer_cls_to_wrap`: None
247
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
248
+ - `deepspeed`: None
249
+ - `label_smoothing_factor`: 0.0
250
+ - `optim`: adamw_torch
251
+ - `optim_args`: None
252
+ - `adafactor`: False
253
+ - `group_by_length`: False
254
+ - `length_column_name`: length
255
+ - `ddp_find_unused_parameters`: None
256
+ - `ddp_bucket_cap_mb`: None
257
+ - `ddp_broadcast_buffers`: False
258
+ - `dataloader_pin_memory`: True
259
+ - `dataloader_persistent_workers`: False
260
+ - `skip_memory_metrics`: True
261
+ - `use_legacy_prediction_loop`: False
262
+ - `push_to_hub`: True
263
+ - `resume_from_checkpoint`: None
264
+ - `hub_model_id`: codersan/validadted_e5smallStudent
265
+ - `hub_strategy`: every_save
266
+ - `hub_private_repo`: None
267
+ - `hub_always_push`: False
268
+ - `gradient_checkpointing`: False
269
+ - `gradient_checkpointing_kwargs`: None
270
+ - `include_inputs_for_metrics`: False
271
+ - `include_for_metrics`: []
272
+ - `eval_do_concat_batches`: True
273
+ - `fp16_backend`: auto
274
+ - `push_to_hub_model_id`: None
275
+ - `push_to_hub_organization`: None
276
+ - `mp_parameters`:
277
+ - `auto_find_batch_size`: False
278
+ - `full_determinism`: False
279
+ - `torchdynamo`: None
280
+ - `ray_scope`: last
281
+ - `ddp_timeout`: 1800
282
+ - `torch_compile`: False
283
+ - `torch_compile_backend`: None
284
+ - `torch_compile_mode`: None
285
+ - `dispatch_batches`: None
286
+ - `split_batches`: None
287
+ - `include_tokens_per_second`: False
288
+ - `include_num_input_tokens_seen`: False
289
+ - `neftune_noise_alpha`: None
290
+ - `optim_target_modules`: None
291
+ - `batch_eval_metrics`: False
292
+ - `eval_on_start`: True
293
+ - `use_liger_kernel`: False
294
+ - `eval_use_gather_object`: False
295
+ - `average_tokens_across_devices`: False
296
+ - `prompts`: None
297
+ - `batch_sampler`: no_duplicates
298
+ - `multi_dataset_batch_sampler`: proportional
299
+
300
+ </details>
301
+
302
+ ### Training Logs
303
+ <details><summary>Click to expand</summary>
304
+
305
+ | Epoch | Step | Training Loss |
306
+ |:------:|:-----:|:-------------:|
307
+ | 0 | 0 | - |
308
+ | 0.0069 | 100 | 0.0004 |
309
+ | 0.0139 | 200 | 0.0004 |
310
+ | 0.0208 | 300 | 0.0003 |
311
+ | 0.0278 | 400 | 0.0003 |
312
+ | 0.0347 | 500 | 0.0003 |
313
+ | 0.0417 | 600 | 0.0003 |
314
+ | 0.0486 | 700 | 0.0003 |
315
+ | 0.0555 | 800 | 0.0003 |
316
+ | 0.0625 | 900 | 0.0003 |
317
+ | 0.0694 | 1000 | 0.0003 |
318
+ | 0.0764 | 1100 | 0.0002 |
319
+ | 0.0833 | 1200 | 0.0002 |
320
+ | 0.0903 | 1300 | 0.0002 |
321
+ | 0.0972 | 1400 | 0.0002 |
322
+ | 0.1041 | 1500 | 0.0002 |
323
+ | 0.1111 | 1600 | 0.0002 |
324
+ | 0.1180 | 1700 | 0.0002 |
325
+ | 0.1250 | 1800 | 0.0002 |
326
+ | 0.1319 | 1900 | 0.0002 |
327
+ | 0.1389 | 2000 | 0.0002 |
328
+ | 0.1458 | 2100 | 0.0002 |
329
+ | 0.1527 | 2200 | 0.0002 |
330
+ | 0.1597 | 2300 | 0.0002 |
331
+ | 0.1666 | 2400 | 0.0002 |
332
+ | 0.1736 | 2500 | 0.0002 |
333
+ | 0.1805 | 2600 | 0.0002 |
334
+ | 0.1875 | 2700 | 0.0002 |
335
+ | 0.1944 | 2800 | 0.0002 |
336
+ | 0.2013 | 2900 | 0.0002 |
337
+ | 0.2083 | 3000 | 0.0002 |
338
+ | 0.2152 | 3100 | 0.0002 |
339
+ | 0.2222 | 3200 | 0.0002 |
340
+ | 0.2291 | 3300 | 0.0002 |
341
+ | 0.2361 | 3400 | 0.0002 |
342
+ | 0.2430 | 3500 | 0.0002 |
343
+ | 0.2499 | 3600 | 0.0002 |
344
+ | 0.2569 | 3700 | 0.0002 |
345
+ | 0.2638 | 3800 | 0.0002 |
346
+ | 0.2708 | 3900 | 0.0002 |
347
+ | 0.2777 | 4000 | 0.0002 |
348
+ | 0.2847 | 4100 | 0.0002 |
349
+ | 0.2916 | 4200 | 0.0002 |
350
+ | 0.2985 | 4300 | 0.0002 |
351
+ | 0.3055 | 4400 | 0.0002 |
352
+ | 0.3124 | 4500 | 0.0002 |
353
+ | 0.3194 | 4600 | 0.0002 |
354
+ | 0.3263 | 4700 | 0.0002 |
355
+ | 0.3333 | 4800 | 0.0002 |
356
+ | 0.3402 | 4900 | 0.0002 |
357
+ | 0.3471 | 5000 | 0.0002 |
358
+ | 0.3541 | 5100 | 0.0002 |
359
+ | 0.3610 | 5200 | 0.0002 |
360
+ | 0.3680 | 5300 | 0.0002 |
361
+ | 0.3749 | 5400 | 0.0002 |
362
+ | 0.3819 | 5500 | 0.0002 |
363
+ | 0.3888 | 5600 | 0.0002 |
364
+ | 0.3958 | 5700 | 0.0002 |
365
+ | 0.4027 | 5800 | 0.0002 |
366
+ | 0.4096 | 5900 | 0.0002 |
367
+ | 0.4166 | 6000 | 0.0002 |
368
+ | 0.4235 | 6100 | 0.0002 |
369
+ | 0.4305 | 6200 | 0.0002 |
370
+ | 0.4374 | 6300 | 0.0002 |
371
+ | 0.4444 | 6400 | 0.0002 |
372
+ | 0.4513 | 6500 | 0.0002 |
373
+ | 0.4582 | 6600 | 0.0002 |
374
+ | 0.4652 | 6700 | 0.0002 |
375
+ | 0.4721 | 6800 | 0.0002 |
376
+ | 0.4791 | 6900 | 0.0002 |
377
+ | 0.4860 | 7000 | 0.0002 |
378
+ | 0.4930 | 7100 | 0.0002 |
379
+ | 0.4999 | 7200 | 0.0002 |
380
+ | 0.5068 | 7300 | 0.0002 |
381
+ | 0.5138 | 7400 | 0.0002 |
382
+ | 0.5207 | 7500 | 0.0002 |
383
+ | 0.5277 | 7600 | 0.0002 |
384
+ | 0.5346 | 7700 | 0.0002 |
385
+ | 0.5416 | 7800 | 0.0002 |
386
+ | 0.5485 | 7900 | 0.0002 |
387
+ | 0.5554 | 8000 | 0.0002 |
388
+ | 0.5624 | 8100 | 0.0002 |
389
+ | 0.5693 | 8200 | 0.0002 |
390
+ | 0.5763 | 8300 | 0.0002 |
391
+ | 0.5832 | 8400 | 0.0002 |
392
+ | 0.5902 | 8500 | 0.0002 |
393
+ | 0.5971 | 8600 | 0.0002 |
394
+ | 0.6040 | 8700 | 0.0002 |
395
+ | 0.6110 | 8800 | 0.0002 |
396
+ | 0.6179 | 8900 | 0.0002 |
397
+ | 0.6249 | 9000 | 0.0002 |
398
+ | 0.6318 | 9100 | 0.0002 |
399
+ | 0.6388 | 9200 | 0.0002 |
400
+ | 0.6457 | 9300 | 0.0002 |
401
+ | 0.6526 | 9400 | 0.0002 |
402
+ | 0.6596 | 9500 | 0.0002 |
403
+ | 0.6665 | 9600 | 0.0002 |
404
+ | 0.6735 | 9700 | 0.0002 |
405
+ | 0.6804 | 9800 | 0.0002 |
406
+ | 0.6874 | 9900 | 0.0002 |
407
+ | 0.6943 | 10000 | 0.0002 |
408
+ | 0.7012 | 10100 | 0.0002 |
409
+ | 0.7082 | 10200 | 0.0002 |
410
+ | 0.7151 | 10300 | 0.0002 |
411
+ | 0.7221 | 10400 | 0.0002 |
412
+ | 0.7290 | 10500 | 0.0002 |
413
+ | 0.7360 | 10600 | 0.0002 |
414
+ | 0.7429 | 10700 | 0.0002 |
415
+ | 0.7498 | 10800 | 0.0002 |
416
+ | 0.7568 | 10900 | 0.0002 |
417
+ | 0.7637 | 11000 | 0.0002 |
418
+ | 0.7707 | 11100 | 0.0002 |
419
+ | 0.7776 | 11200 | 0.0002 |
420
+ | 0.7846 | 11300 | 0.0002 |
421
+ | 0.7915 | 11400 | 0.0002 |
422
+ | 0.7984 | 11500 | 0.0002 |
423
+ | 0.8054 | 11600 | 0.0002 |
424
+ | 0.8123 | 11700 | 0.0002 |
425
+ | 0.8193 | 11800 | 0.0002 |
426
+ | 0.8262 | 11900 | 0.0002 |
427
+ | 0.8332 | 12000 | 0.0002 |
428
+ | 0.8401 | 12100 | 0.0002 |
429
+ | 0.8470 | 12200 | 0.0002 |
430
+ | 0.8540 | 12300 | 0.0002 |
431
+ | 0.8609 | 12400 | 0.0002 |
432
+ | 0.8679 | 12500 | 0.0002 |
433
+ | 0.8748 | 12600 | 0.0002 |
434
+ | 0.8818 | 12700 | 0.0002 |
435
+ | 0.8887 | 12800 | 0.0002 |
436
+ | 0.8956 | 12900 | 0.0002 |
437
+ | 0.9026 | 13000 | 0.0002 |
438
+ | 0.9095 | 13100 | 0.0002 |
439
+ | 0.9165 | 13200 | 0.0002 |
440
+ | 0.9234 | 13300 | 0.0002 |
441
+ | 0.9304 | 13400 | 0.0002 |
442
+ | 0.9373 | 13500 | 0.0002 |
443
+ | 0.9442 | 13600 | 0.0002 |
444
+ | 0.9512 | 13700 | 0.0002 |
445
+ | 0.9581 | 13800 | 0.0002 |
446
+ | 0.9651 | 13900 | 0.0002 |
447
+ | 0.9720 | 14000 | 0.0002 |
448
+ | 0.9790 | 14100 | 0.0002 |
449
+ | 0.9859 | 14200 | 0.0002 |
450
+ | 0.9928 | 14300 | 0.0002 |
451
+ | 0.9998 | 14400 | 0.0002 |
452
+
453
+ </details>
454
+
455
+ ### Framework Versions
456
+ - Python: 3.10.12
457
+ - Sentence Transformers: 3.3.1
458
+ - Transformers: 4.47.0
459
+ - PyTorch: 2.5.1+cu121
460
+ - Accelerate: 1.2.1
461
+ - Datasets: 3.2.0
462
+ - Tokenizers: 0.21.0
463
+
464
+ ## Citation
465
+
466
+ ### BibTeX
467
+
468
+ #### Sentence Transformers
469
+ ```bibtex
470
+ @inproceedings{reimers-2019-sentence-bert,
471
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
472
+ author = "Reimers, Nils and Gurevych, Iryna",
473
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
474
+ month = "11",
475
+ year = "2019",
476
+ publisher = "Association for Computational Linguistics",
477
+ url = "https://arxiv.org/abs/1908.10084",
478
+ }
479
+ ```
480
+
481
+ <!--
482
+ ## Glossary
483
+
484
+ *Clearly define terms in order to be accessible across audiences.*
485
+ -->
486
+
487
+ <!--
488
+ ## Model Card Authors
489
+
490
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
491
+ -->
492
+
493
+ <!--
494
+ ## Model Card Contact
495
+
496
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
497
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-small",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "tokenizer_class": "XLMRobertaTokenizer",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.47.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.0",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1ced6094ddf07b1439339431ce612ee0733b7c5d5d2a1347e0dabcd0ee2d0d2
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef04f2b385d1514f500e779207ace0f53e30895ce37563179e29f4022d28ca38
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 512,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "sp_model_kwargs": {},
54
+ "tokenizer_class": "XLMRobertaTokenizer",
55
+ "unk_token": "<unk>"
56
+ }