File size: 2,114 Bytes
bac933e
 
 
 
 
 
 
 
972aebf
 
bac933e
 
 
 
 
 
 
 
 
 
 
 
972aebf
 
bac933e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
972aebf
bac933e
 
972aebf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bac933e
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: whisper-small-English
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-small-English

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4278
- Accuracy: 22.4848

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1469        | 0.4   | 100  | 0.3931          | 20.8666  |
| 0.1704        | 0.8   | 200  | 0.3690          | 20.5089  |
| 0.1317        | 1.2   | 300  | 0.3650          | 20.4210  |
| 0.1323        | 1.6   | 400  | 0.3659          | 21.3649  |
| 0.131         | 2.0   | 500  | 0.3675          | 21.1480  |
| 0.0662        | 2.4   | 600  | 0.4080          | 21.8105  |
| 0.0678        | 2.8   | 700  | 0.3958          | 22.5199  |
| 0.028         | 3.2   | 800  | 0.4290          | 22.0216  |
| 0.0313        | 3.6   | 900  | 0.4195          | 22.4496  |
| 0.032         | 4.0   | 1000 | 0.4278          | 22.4848  |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1