--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - accuracy model-index: - name: whisper-small-English results: [] --- # whisper-small-English This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4278 - Accuracy: 22.4848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1469 | 0.4 | 100 | 0.3931 | 20.8666 | | 0.1704 | 0.8 | 200 | 0.3690 | 20.5089 | | 0.1317 | 1.2 | 300 | 0.3650 | 20.4210 | | 0.1323 | 1.6 | 400 | 0.3659 | 21.3649 | | 0.131 | 2.0 | 500 | 0.3675 | 21.1480 | | 0.0662 | 2.4 | 600 | 0.4080 | 21.8105 | | 0.0678 | 2.8 | 700 | 0.3958 | 22.5199 | | 0.028 | 3.2 | 800 | 0.4290 | 22.0216 | | 0.0313 | 3.6 | 900 | 0.4195 | 22.4496 | | 0.032 | 4.0 | 1000 | 0.4278 | 22.4848 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1