|
from transformers import PretrainedConfig, PreTrainedModel |
|
|
|
class DiffusionConfig(PretrainedConfig): |
|
"""Configuration class for Diffusion-LLM model.""" |
|
model_type = "diffusionLM" |
|
|
|
def __init__( |
|
self, |
|
vocab_size: int = 50257, |
|
hidden_size: int = 768, |
|
num_hidden_layers: int = 12, |
|
num_attention_heads: int = 12, |
|
intermediate_size: int = 3072, |
|
hidden_dropout_prob: float = 0.1, |
|
attention_probs_dropout_prob: float = 0.1, |
|
max_position_embeddings: int = 1024, |
|
initializer_range: float = 0.02, |
|
layer_norm_eps: float = 1e-12, |
|
pad_token_id: int = 0, |
|
mask_token_id: int = 50256, |
|
eos_token_id: int = 50256, |
|
num_timesteps: int = 100, |
|
time_embed_dim: int = 128, |
|
**kwargs |
|
): |
|
super().__init__(pad_token_id=pad_token_id, **kwargs) |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.mask_token_id = mask_token_id |
|
self.eos_token_id = eos_token_id |
|
self.num_timesteps = num_timesteps |
|
self.time_embed_dim = time_embed_dim |