File size: 2,104 Bytes
c492b4b 9237625 a3299a4 aeac7aa 9237625 c492b4b 9237625 c492b4b d6c54e1 9237625 d6c54e1 9237625 d6c54e1 9237625 d6c54e1 9237625 d6c54e1 9237625 d6c54e1 9237625 d6c54e1 9237625 d6c54e1 9237625 d6c54e1 9237625 d6c54e1 9237625 d6c54e1 9237625 d6c54e1 9237625 d6c54e1 9237625 d6c54e1 9237625 d6c54e1 9237625 d6c54e1 9237625 a3299a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
library_name: transformers
language:
- ur
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: WhisperLiveSubs
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: ur
split: None
args: 'config: hi, split: test'
metrics:
- name: Wer
type: wer
value: 33.52296915515306
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# WhisperLiveSubs
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6872
- Wer: 33.5230
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.2002 | 2.1529 | 1000 | 0.5344 | 52.4633 |
| 0.0573 | 4.3057 | 2000 | 0.5705 | 37.6640 |
| 0.0109 | 6.4586 | 3000 | 0.6432 | 36.3443 |
| 0.0044 | 8.6114 | 4000 | 0.6872 | 33.5230 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1 |