File size: 2,104 Bytes
c492b4b
9237625
 
a3299a4
aeac7aa
9237625
 
 
c492b4b
 
 
 
9237625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c492b4b
d6c54e1
9237625
 
d6c54e1
9237625
d6c54e1
9237625
 
 
 
d6c54e1
9237625
d6c54e1
9237625
d6c54e1
9237625
d6c54e1
9237625
d6c54e1
9237625
d6c54e1
9237625
d6c54e1
9237625
d6c54e1
9237625
d6c54e1
9237625
 
 
 
 
 
 
 
 
 
 
 
d6c54e1
9237625
d6c54e1
9237625
 
 
 
 
 
d6c54e1
 
9237625
d6c54e1
9237625
 
 
a3299a4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
library_name: transformers
language:
- ur
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: WhisperLiveSubs
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 11.0
      type: mozilla-foundation/common_voice_11_0
      config: ur
      split: None
      args: 'config: hi, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 33.52296915515306
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# WhisperLiveSubs

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6872
- Wer: 33.5230

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.2002        | 2.1529 | 1000 | 0.5344          | 52.4633 |
| 0.0573        | 4.3057 | 2000 | 0.5705          | 37.6640 |
| 0.0109        | 6.4586 | 3000 | 0.6432          | 36.3443 |
| 0.0044        | 8.6114 | 4000 | 0.6872          | 33.5230 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1