codewizardUV commited on
Commit
8a04510
·
verified ·
1 Parent(s): 6ccfd60

Upload 11 files

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-v0.1
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "up_proj",
25
+ "o_proj",
26
+ "gate_proj",
27
+ "down_proj",
28
+ "lm_head",
29
+ "v_proj",
30
+ "q_proj"
31
+ ],
32
+ "task_type": "CAUSAL_LM",
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7eafcbc0089aed2f7e768fcdfb94e5cad7c85d830deda9edc95e65c910a3bb6e
3
+ size 694431312
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a939a1db32129f5fdcd5d4b0297448b7b0c7893c051ea3ba917d15999b155a1d
3
+ size 340434810
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffbbf1b6cf3dfe593d4df98867b126284b77f8a7fd6b324b295df656d3aa0125
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84b0665c36ae581687c7b4e8d9d2bde38129814b2025110f7047eb4135a81ab1
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 1000000000000000019884624838656,
36
+ "pad_token": "</s>",
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false
42
+ }
trainer_state.json ADDED
@@ -0,0 +1,942 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.6187845468521118,
3
+ "best_model_checkpoint": "./Sustainability_model/checkpoint-2000",
4
+ "epoch": 1.220703125,
5
+ "eval_steps": 100,
6
+ "global_step": 2500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01220703125,
13
+ "grad_norm": 3.0088555812835693,
14
+ "learning_rate": 2e-05,
15
+ "loss": 2.1582,
16
+ "step": 25
17
+ },
18
+ {
19
+ "epoch": 0.0244140625,
20
+ "grad_norm": 5.197660446166992,
21
+ "learning_rate": 2e-05,
22
+ "loss": 2.0856,
23
+ "step": 50
24
+ },
25
+ {
26
+ "epoch": 0.03662109375,
27
+ "grad_norm": 3.234564781188965,
28
+ "learning_rate": 2e-05,
29
+ "loss": 1.9269,
30
+ "step": 75
31
+ },
32
+ {
33
+ "epoch": 0.048828125,
34
+ "grad_norm": 7.08390474319458,
35
+ "learning_rate": 2e-05,
36
+ "loss": 1.888,
37
+ "step": 100
38
+ },
39
+ {
40
+ "epoch": 0.048828125,
41
+ "eval_loss": 1.8261231184005737,
42
+ "eval_runtime": 590.9102,
43
+ "eval_samples_per_second": 3.468,
44
+ "eval_steps_per_second": 0.435,
45
+ "step": 100
46
+ },
47
+ {
48
+ "epoch": 0.06103515625,
49
+ "grad_norm": 3.1646361351013184,
50
+ "learning_rate": 2e-05,
51
+ "loss": 1.8649,
52
+ "step": 125
53
+ },
54
+ {
55
+ "epoch": 0.0732421875,
56
+ "grad_norm": 6.104555130004883,
57
+ "learning_rate": 2e-05,
58
+ "loss": 1.742,
59
+ "step": 150
60
+ },
61
+ {
62
+ "epoch": 0.08544921875,
63
+ "grad_norm": 2.9724113941192627,
64
+ "learning_rate": 2e-05,
65
+ "loss": 1.7567,
66
+ "step": 175
67
+ },
68
+ {
69
+ "epoch": 0.09765625,
70
+ "grad_norm": 6.2468791007995605,
71
+ "learning_rate": 2e-05,
72
+ "loss": 1.7452,
73
+ "step": 200
74
+ },
75
+ {
76
+ "epoch": 0.09765625,
77
+ "eval_loss": 1.7315690517425537,
78
+ "eval_runtime": 590.974,
79
+ "eval_samples_per_second": 3.467,
80
+ "eval_steps_per_second": 0.435,
81
+ "step": 200
82
+ },
83
+ {
84
+ "epoch": 0.10986328125,
85
+ "grad_norm": 2.97963285446167,
86
+ "learning_rate": 2e-05,
87
+ "loss": 1.6694,
88
+ "step": 225
89
+ },
90
+ {
91
+ "epoch": 0.1220703125,
92
+ "grad_norm": 4.771264553070068,
93
+ "learning_rate": 2e-05,
94
+ "loss": 1.6833,
95
+ "step": 250
96
+ },
97
+ {
98
+ "epoch": 0.13427734375,
99
+ "grad_norm": 2.825491428375244,
100
+ "learning_rate": 2e-05,
101
+ "loss": 1.6958,
102
+ "step": 275
103
+ },
104
+ {
105
+ "epoch": 0.146484375,
106
+ "grad_norm": 4.647068977355957,
107
+ "learning_rate": 2e-05,
108
+ "loss": 1.7428,
109
+ "step": 300
110
+ },
111
+ {
112
+ "epoch": 0.146484375,
113
+ "eval_loss": 1.6999598741531372,
114
+ "eval_runtime": 590.2857,
115
+ "eval_samples_per_second": 3.471,
116
+ "eval_steps_per_second": 0.435,
117
+ "step": 300
118
+ },
119
+ {
120
+ "epoch": 0.15869140625,
121
+ "grad_norm": 3.1953535079956055,
122
+ "learning_rate": 2e-05,
123
+ "loss": 1.7458,
124
+ "step": 325
125
+ },
126
+ {
127
+ "epoch": 0.1708984375,
128
+ "grad_norm": 5.5873799324035645,
129
+ "learning_rate": 2e-05,
130
+ "loss": 1.6244,
131
+ "step": 350
132
+ },
133
+ {
134
+ "epoch": 0.18310546875,
135
+ "grad_norm": 2.5425360202789307,
136
+ "learning_rate": 2e-05,
137
+ "loss": 1.6862,
138
+ "step": 375
139
+ },
140
+ {
141
+ "epoch": 0.1953125,
142
+ "grad_norm": 4.082971572875977,
143
+ "learning_rate": 2e-05,
144
+ "loss": 1.6836,
145
+ "step": 400
146
+ },
147
+ {
148
+ "epoch": 0.1953125,
149
+ "eval_loss": 1.6864606142044067,
150
+ "eval_runtime": 589.1989,
151
+ "eval_samples_per_second": 3.478,
152
+ "eval_steps_per_second": 0.436,
153
+ "step": 400
154
+ },
155
+ {
156
+ "epoch": 0.20751953125,
157
+ "grad_norm": 2.6709253787994385,
158
+ "learning_rate": 2e-05,
159
+ "loss": 1.6939,
160
+ "step": 425
161
+ },
162
+ {
163
+ "epoch": 0.2197265625,
164
+ "grad_norm": 5.410455703735352,
165
+ "learning_rate": 2e-05,
166
+ "loss": 1.5974,
167
+ "step": 450
168
+ },
169
+ {
170
+ "epoch": 0.23193359375,
171
+ "grad_norm": 2.8631389141082764,
172
+ "learning_rate": 2e-05,
173
+ "loss": 1.6609,
174
+ "step": 475
175
+ },
176
+ {
177
+ "epoch": 0.244140625,
178
+ "grad_norm": 3.2581229209899902,
179
+ "learning_rate": 2e-05,
180
+ "loss": 1.6251,
181
+ "step": 500
182
+ },
183
+ {
184
+ "epoch": 0.244140625,
185
+ "eval_loss": 1.67488431930542,
186
+ "eval_runtime": 589.2638,
187
+ "eval_samples_per_second": 3.477,
188
+ "eval_steps_per_second": 0.436,
189
+ "step": 500
190
+ },
191
+ {
192
+ "epoch": 0.25634765625,
193
+ "grad_norm": 2.8811697959899902,
194
+ "learning_rate": 2e-05,
195
+ "loss": 1.7135,
196
+ "step": 525
197
+ },
198
+ {
199
+ "epoch": 0.2685546875,
200
+ "grad_norm": 5.96162748336792,
201
+ "learning_rate": 2e-05,
202
+ "loss": 1.6709,
203
+ "step": 550
204
+ },
205
+ {
206
+ "epoch": 0.28076171875,
207
+ "grad_norm": 2.4651806354522705,
208
+ "learning_rate": 2e-05,
209
+ "loss": 1.6504,
210
+ "step": 575
211
+ },
212
+ {
213
+ "epoch": 0.29296875,
214
+ "grad_norm": 4.032615661621094,
215
+ "learning_rate": 2e-05,
216
+ "loss": 1.7128,
217
+ "step": 600
218
+ },
219
+ {
220
+ "epoch": 0.29296875,
221
+ "eval_loss": 1.668798565864563,
222
+ "eval_runtime": 589.1105,
223
+ "eval_samples_per_second": 3.478,
224
+ "eval_steps_per_second": 0.436,
225
+ "step": 600
226
+ },
227
+ {
228
+ "epoch": 0.30517578125,
229
+ "grad_norm": 2.694554328918457,
230
+ "learning_rate": 2e-05,
231
+ "loss": 1.7093,
232
+ "step": 625
233
+ },
234
+ {
235
+ "epoch": 0.3173828125,
236
+ "grad_norm": 4.213258743286133,
237
+ "learning_rate": 2e-05,
238
+ "loss": 1.6899,
239
+ "step": 650
240
+ },
241
+ {
242
+ "epoch": 0.32958984375,
243
+ "grad_norm": 2.69679594039917,
244
+ "learning_rate": 2e-05,
245
+ "loss": 1.6451,
246
+ "step": 675
247
+ },
248
+ {
249
+ "epoch": 0.341796875,
250
+ "grad_norm": 3.6988604068756104,
251
+ "learning_rate": 2e-05,
252
+ "loss": 1.631,
253
+ "step": 700
254
+ },
255
+ {
256
+ "epoch": 0.341796875,
257
+ "eval_loss": 1.662984013557434,
258
+ "eval_runtime": 588.5535,
259
+ "eval_samples_per_second": 3.481,
260
+ "eval_steps_per_second": 0.437,
261
+ "step": 700
262
+ },
263
+ {
264
+ "epoch": 0.35400390625,
265
+ "grad_norm": 2.6815237998962402,
266
+ "learning_rate": 2e-05,
267
+ "loss": 1.688,
268
+ "step": 725
269
+ },
270
+ {
271
+ "epoch": 0.3662109375,
272
+ "grad_norm": 5.819088459014893,
273
+ "learning_rate": 2e-05,
274
+ "loss": 1.6649,
275
+ "step": 750
276
+ },
277
+ {
278
+ "epoch": 0.37841796875,
279
+ "grad_norm": 2.524092674255371,
280
+ "learning_rate": 2e-05,
281
+ "loss": 1.6305,
282
+ "step": 775
283
+ },
284
+ {
285
+ "epoch": 0.390625,
286
+ "grad_norm": 4.0569963455200195,
287
+ "learning_rate": 2e-05,
288
+ "loss": 1.6493,
289
+ "step": 800
290
+ },
291
+ {
292
+ "epoch": 0.390625,
293
+ "eval_loss": 1.6568603515625,
294
+ "eval_runtime": 588.2081,
295
+ "eval_samples_per_second": 3.483,
296
+ "eval_steps_per_second": 0.437,
297
+ "step": 800
298
+ },
299
+ {
300
+ "epoch": 0.40283203125,
301
+ "grad_norm": 2.565763473510742,
302
+ "learning_rate": 2e-05,
303
+ "loss": 1.6983,
304
+ "step": 825
305
+ },
306
+ {
307
+ "epoch": 0.4150390625,
308
+ "grad_norm": 6.5800676345825195,
309
+ "learning_rate": 2e-05,
310
+ "loss": 1.6565,
311
+ "step": 850
312
+ },
313
+ {
314
+ "epoch": 0.42724609375,
315
+ "grad_norm": 2.1741669178009033,
316
+ "learning_rate": 2e-05,
317
+ "loss": 1.7585,
318
+ "step": 875
319
+ },
320
+ {
321
+ "epoch": 0.439453125,
322
+ "grad_norm": 3.838252305984497,
323
+ "learning_rate": 2e-05,
324
+ "loss": 1.6141,
325
+ "step": 900
326
+ },
327
+ {
328
+ "epoch": 0.439453125,
329
+ "eval_loss": 1.6529587507247925,
330
+ "eval_runtime": 588.0827,
331
+ "eval_samples_per_second": 3.484,
332
+ "eval_steps_per_second": 0.437,
333
+ "step": 900
334
+ },
335
+ {
336
+ "epoch": 0.45166015625,
337
+ "grad_norm": 4.486364841461182,
338
+ "learning_rate": 2e-05,
339
+ "loss": 1.6489,
340
+ "step": 925
341
+ },
342
+ {
343
+ "epoch": 0.4638671875,
344
+ "grad_norm": 3.693453311920166,
345
+ "learning_rate": 2e-05,
346
+ "loss": 1.6026,
347
+ "step": 950
348
+ },
349
+ {
350
+ "epoch": 0.47607421875,
351
+ "grad_norm": 2.4286513328552246,
352
+ "learning_rate": 2e-05,
353
+ "loss": 1.5639,
354
+ "step": 975
355
+ },
356
+ {
357
+ "epoch": 0.48828125,
358
+ "grad_norm": 3.9820656776428223,
359
+ "learning_rate": 2e-05,
360
+ "loss": 1.6621,
361
+ "step": 1000
362
+ },
363
+ {
364
+ "epoch": 0.48828125,
365
+ "eval_loss": 1.6506658792495728,
366
+ "eval_runtime": 588.1468,
367
+ "eval_samples_per_second": 3.484,
368
+ "eval_steps_per_second": 0.437,
369
+ "step": 1000
370
+ },
371
+ {
372
+ "epoch": 0.50048828125,
373
+ "grad_norm": 2.915191411972046,
374
+ "learning_rate": 2e-05,
375
+ "loss": 1.6281,
376
+ "step": 1025
377
+ },
378
+ {
379
+ "epoch": 0.5126953125,
380
+ "grad_norm": 4.406491756439209,
381
+ "learning_rate": 2e-05,
382
+ "loss": 1.7108,
383
+ "step": 1050
384
+ },
385
+ {
386
+ "epoch": 0.52490234375,
387
+ "grad_norm": 2.6505398750305176,
388
+ "learning_rate": 2e-05,
389
+ "loss": 1.7151,
390
+ "step": 1075
391
+ },
392
+ {
393
+ "epoch": 0.537109375,
394
+ "grad_norm": 3.872833728790283,
395
+ "learning_rate": 2e-05,
396
+ "loss": 1.5925,
397
+ "step": 1100
398
+ },
399
+ {
400
+ "epoch": 0.537109375,
401
+ "eval_loss": 1.6442919969558716,
402
+ "eval_runtime": 588.2624,
403
+ "eval_samples_per_second": 3.483,
404
+ "eval_steps_per_second": 0.437,
405
+ "step": 1100
406
+ },
407
+ {
408
+ "epoch": 0.54931640625,
409
+ "grad_norm": 2.210282802581787,
410
+ "learning_rate": 2e-05,
411
+ "loss": 1.5845,
412
+ "step": 1125
413
+ },
414
+ {
415
+ "epoch": 0.5615234375,
416
+ "grad_norm": 3.7344298362731934,
417
+ "learning_rate": 2e-05,
418
+ "loss": 1.5994,
419
+ "step": 1150
420
+ },
421
+ {
422
+ "epoch": 0.57373046875,
423
+ "grad_norm": 2.3247945308685303,
424
+ "learning_rate": 2e-05,
425
+ "loss": 1.622,
426
+ "step": 1175
427
+ },
428
+ {
429
+ "epoch": 0.5859375,
430
+ "grad_norm": 4.974765300750732,
431
+ "learning_rate": 2e-05,
432
+ "loss": 1.6571,
433
+ "step": 1200
434
+ },
435
+ {
436
+ "epoch": 0.5859375,
437
+ "eval_loss": 1.6453276872634888,
438
+ "eval_runtime": 588.5916,
439
+ "eval_samples_per_second": 3.481,
440
+ "eval_steps_per_second": 0.437,
441
+ "step": 1200
442
+ },
443
+ {
444
+ "epoch": 0.59814453125,
445
+ "grad_norm": 2.6029038429260254,
446
+ "learning_rate": 2e-05,
447
+ "loss": 1.6854,
448
+ "step": 1225
449
+ },
450
+ {
451
+ "epoch": 0.6103515625,
452
+ "grad_norm": 3.8252599239349365,
453
+ "learning_rate": 2e-05,
454
+ "loss": 1.6875,
455
+ "step": 1250
456
+ },
457
+ {
458
+ "epoch": 0.62255859375,
459
+ "grad_norm": 2.5335938930511475,
460
+ "learning_rate": 2e-05,
461
+ "loss": 1.5917,
462
+ "step": 1275
463
+ },
464
+ {
465
+ "epoch": 0.634765625,
466
+ "grad_norm": 3.6627395153045654,
467
+ "learning_rate": 2e-05,
468
+ "loss": 1.6078,
469
+ "step": 1300
470
+ },
471
+ {
472
+ "epoch": 0.634765625,
473
+ "eval_loss": 1.638580322265625,
474
+ "eval_runtime": 588.7972,
475
+ "eval_samples_per_second": 3.48,
476
+ "eval_steps_per_second": 0.436,
477
+ "step": 1300
478
+ },
479
+ {
480
+ "epoch": 0.64697265625,
481
+ "grad_norm": 2.5015482902526855,
482
+ "learning_rate": 2e-05,
483
+ "loss": 1.6793,
484
+ "step": 1325
485
+ },
486
+ {
487
+ "epoch": 0.6591796875,
488
+ "grad_norm": 3.70072340965271,
489
+ "learning_rate": 2e-05,
490
+ "loss": 1.661,
491
+ "step": 1350
492
+ },
493
+ {
494
+ "epoch": 0.67138671875,
495
+ "grad_norm": 2.6039609909057617,
496
+ "learning_rate": 2e-05,
497
+ "loss": 1.6349,
498
+ "step": 1375
499
+ },
500
+ {
501
+ "epoch": 0.68359375,
502
+ "grad_norm": 3.3291618824005127,
503
+ "learning_rate": 2e-05,
504
+ "loss": 1.616,
505
+ "step": 1400
506
+ },
507
+ {
508
+ "epoch": 0.68359375,
509
+ "eval_loss": 1.6347644329071045,
510
+ "eval_runtime": 588.5837,
511
+ "eval_samples_per_second": 3.481,
512
+ "eval_steps_per_second": 0.437,
513
+ "step": 1400
514
+ },
515
+ {
516
+ "epoch": 0.69580078125,
517
+ "grad_norm": 2.6853315830230713,
518
+ "learning_rate": 2e-05,
519
+ "loss": 1.7087,
520
+ "step": 1425
521
+ },
522
+ {
523
+ "epoch": 0.7080078125,
524
+ "grad_norm": 3.296851396560669,
525
+ "learning_rate": 2e-05,
526
+ "loss": 1.6676,
527
+ "step": 1450
528
+ },
529
+ {
530
+ "epoch": 0.72021484375,
531
+ "grad_norm": 2.3841185569763184,
532
+ "learning_rate": 2e-05,
533
+ "loss": 1.6212,
534
+ "step": 1475
535
+ },
536
+ {
537
+ "epoch": 0.732421875,
538
+ "grad_norm": 3.612088441848755,
539
+ "learning_rate": 2e-05,
540
+ "loss": 1.6473,
541
+ "step": 1500
542
+ },
543
+ {
544
+ "epoch": 0.732421875,
545
+ "eval_loss": 1.6339186429977417,
546
+ "eval_runtime": 588.3073,
547
+ "eval_samples_per_second": 3.483,
548
+ "eval_steps_per_second": 0.437,
549
+ "step": 1500
550
+ },
551
+ {
552
+ "epoch": 0.74462890625,
553
+ "grad_norm": 2.6555330753326416,
554
+ "learning_rate": 2e-05,
555
+ "loss": 1.6643,
556
+ "step": 1525
557
+ },
558
+ {
559
+ "epoch": 0.7568359375,
560
+ "grad_norm": 4.533504486083984,
561
+ "learning_rate": 2e-05,
562
+ "loss": 1.6236,
563
+ "step": 1550
564
+ },
565
+ {
566
+ "epoch": 0.76904296875,
567
+ "grad_norm": 2.2276220321655273,
568
+ "learning_rate": 2e-05,
569
+ "loss": 1.6783,
570
+ "step": 1575
571
+ },
572
+ {
573
+ "epoch": 0.78125,
574
+ "grad_norm": 3.533113956451416,
575
+ "learning_rate": 2e-05,
576
+ "loss": 1.6123,
577
+ "step": 1600
578
+ },
579
+ {
580
+ "epoch": 0.78125,
581
+ "eval_loss": 1.628023386001587,
582
+ "eval_runtime": 588.6386,
583
+ "eval_samples_per_second": 3.481,
584
+ "eval_steps_per_second": 0.437,
585
+ "step": 1600
586
+ },
587
+ {
588
+ "epoch": 0.79345703125,
589
+ "grad_norm": 2.2332117557525635,
590
+ "learning_rate": 2e-05,
591
+ "loss": 1.6795,
592
+ "step": 1625
593
+ },
594
+ {
595
+ "epoch": 0.8056640625,
596
+ "grad_norm": 4.059207916259766,
597
+ "learning_rate": 2e-05,
598
+ "loss": 1.5915,
599
+ "step": 1650
600
+ },
601
+ {
602
+ "epoch": 0.81787109375,
603
+ "grad_norm": 2.46692156791687,
604
+ "learning_rate": 2e-05,
605
+ "loss": 1.6456,
606
+ "step": 1675
607
+ },
608
+ {
609
+ "epoch": 0.830078125,
610
+ "grad_norm": 3.602611780166626,
611
+ "learning_rate": 2e-05,
612
+ "loss": 1.564,
613
+ "step": 1700
614
+ },
615
+ {
616
+ "epoch": 0.830078125,
617
+ "eval_loss": 1.6274890899658203,
618
+ "eval_runtime": 588.2617,
619
+ "eval_samples_per_second": 3.483,
620
+ "eval_steps_per_second": 0.437,
621
+ "step": 1700
622
+ },
623
+ {
624
+ "epoch": 0.84228515625,
625
+ "grad_norm": 2.20896315574646,
626
+ "learning_rate": 2e-05,
627
+ "loss": 1.6469,
628
+ "step": 1725
629
+ },
630
+ {
631
+ "epoch": 0.8544921875,
632
+ "grad_norm": 4.329638481140137,
633
+ "learning_rate": 2e-05,
634
+ "loss": 1.5571,
635
+ "step": 1750
636
+ },
637
+ {
638
+ "epoch": 0.86669921875,
639
+ "grad_norm": 1.9945570230484009,
640
+ "learning_rate": 2e-05,
641
+ "loss": 1.6461,
642
+ "step": 1775
643
+ },
644
+ {
645
+ "epoch": 0.87890625,
646
+ "grad_norm": 3.428687334060669,
647
+ "learning_rate": 2e-05,
648
+ "loss": 1.6564,
649
+ "step": 1800
650
+ },
651
+ {
652
+ "epoch": 0.87890625,
653
+ "eval_loss": 1.6232744455337524,
654
+ "eval_runtime": 588.0784,
655
+ "eval_samples_per_second": 3.484,
656
+ "eval_steps_per_second": 0.437,
657
+ "step": 1800
658
+ },
659
+ {
660
+ "epoch": 0.89111328125,
661
+ "grad_norm": 2.5266592502593994,
662
+ "learning_rate": 2e-05,
663
+ "loss": 1.5607,
664
+ "step": 1825
665
+ },
666
+ {
667
+ "epoch": 0.9033203125,
668
+ "grad_norm": 3.4067883491516113,
669
+ "learning_rate": 2e-05,
670
+ "loss": 1.6394,
671
+ "step": 1850
672
+ },
673
+ {
674
+ "epoch": 0.91552734375,
675
+ "grad_norm": 2.0028152465820312,
676
+ "learning_rate": 2e-05,
677
+ "loss": 1.6908,
678
+ "step": 1875
679
+ },
680
+ {
681
+ "epoch": 0.927734375,
682
+ "grad_norm": 2.8983733654022217,
683
+ "learning_rate": 2e-05,
684
+ "loss": 1.5646,
685
+ "step": 1900
686
+ },
687
+ {
688
+ "epoch": 0.927734375,
689
+ "eval_loss": 1.6202832460403442,
690
+ "eval_runtime": 587.8115,
691
+ "eval_samples_per_second": 3.486,
692
+ "eval_steps_per_second": 0.437,
693
+ "step": 1900
694
+ },
695
+ {
696
+ "epoch": 0.93994140625,
697
+ "grad_norm": 2.6408419609069824,
698
+ "learning_rate": 2e-05,
699
+ "loss": 1.5905,
700
+ "step": 1925
701
+ },
702
+ {
703
+ "epoch": 0.9521484375,
704
+ "grad_norm": 3.899275302886963,
705
+ "learning_rate": 2e-05,
706
+ "loss": 1.6138,
707
+ "step": 1950
708
+ },
709
+ {
710
+ "epoch": 0.96435546875,
711
+ "grad_norm": 2.338137149810791,
712
+ "learning_rate": 2e-05,
713
+ "loss": 1.6963,
714
+ "step": 1975
715
+ },
716
+ {
717
+ "epoch": 0.9765625,
718
+ "grad_norm": 3.6352951526641846,
719
+ "learning_rate": 2e-05,
720
+ "loss": 1.5849,
721
+ "step": 2000
722
+ },
723
+ {
724
+ "epoch": 0.9765625,
725
+ "eval_loss": 1.6187845468521118,
726
+ "eval_runtime": 587.8791,
727
+ "eval_samples_per_second": 3.485,
728
+ "eval_steps_per_second": 0.437,
729
+ "step": 2000
730
+ },
731
+ {
732
+ "epoch": 0.98876953125,
733
+ "grad_norm": 2.4254846572875977,
734
+ "learning_rate": 2e-05,
735
+ "loss": 1.6391,
736
+ "step": 2025
737
+ },
738
+ {
739
+ "epoch": 1.0009765625,
740
+ "grad_norm": 2.079317569732666,
741
+ "learning_rate": 2e-05,
742
+ "loss": 1.6238,
743
+ "step": 2050
744
+ },
745
+ {
746
+ "epoch": 1.01318359375,
747
+ "grad_norm": 2.1677002906799316,
748
+ "learning_rate": 2e-05,
749
+ "loss": 1.5543,
750
+ "step": 2075
751
+ },
752
+ {
753
+ "epoch": 1.025390625,
754
+ "grad_norm": 2.4266505241394043,
755
+ "learning_rate": 2e-05,
756
+ "loss": 1.4812,
757
+ "step": 2100
758
+ },
759
+ {
760
+ "epoch": 1.025390625,
761
+ "eval_loss": 1.6256210803985596,
762
+ "eval_runtime": 585.954,
763
+ "eval_samples_per_second": 3.497,
764
+ "eval_steps_per_second": 0.439,
765
+ "step": 2100
766
+ },
767
+ {
768
+ "epoch": 1.03759765625,
769
+ "grad_norm": 2.4697976112365723,
770
+ "learning_rate": 2e-05,
771
+ "loss": 1.5147,
772
+ "step": 2125
773
+ },
774
+ {
775
+ "epoch": 1.0498046875,
776
+ "grad_norm": 2.3185527324676514,
777
+ "learning_rate": 2e-05,
778
+ "loss": 1.5198,
779
+ "step": 2150
780
+ },
781
+ {
782
+ "epoch": 1.06201171875,
783
+ "grad_norm": 2.7304463386535645,
784
+ "learning_rate": 2e-05,
785
+ "loss": 1.5237,
786
+ "step": 2175
787
+ },
788
+ {
789
+ "epoch": 1.07421875,
790
+ "grad_norm": 2.616072177886963,
791
+ "learning_rate": 2e-05,
792
+ "loss": 1.5598,
793
+ "step": 2200
794
+ },
795
+ {
796
+ "epoch": 1.07421875,
797
+ "eval_loss": 1.623382568359375,
798
+ "eval_runtime": 586.1381,
799
+ "eval_samples_per_second": 3.496,
800
+ "eval_steps_per_second": 0.438,
801
+ "step": 2200
802
+ },
803
+ {
804
+ "epoch": 1.08642578125,
805
+ "grad_norm": 2.7308809757232666,
806
+ "learning_rate": 2e-05,
807
+ "loss": 1.5691,
808
+ "step": 2225
809
+ },
810
+ {
811
+ "epoch": 1.0986328125,
812
+ "grad_norm": 2.6916451454162598,
813
+ "learning_rate": 2e-05,
814
+ "loss": 1.5102,
815
+ "step": 2250
816
+ },
817
+ {
818
+ "epoch": 1.11083984375,
819
+ "grad_norm": 2.960580348968506,
820
+ "learning_rate": 2e-05,
821
+ "loss": 1.539,
822
+ "step": 2275
823
+ },
824
+ {
825
+ "epoch": 1.123046875,
826
+ "grad_norm": 2.5936009883880615,
827
+ "learning_rate": 2e-05,
828
+ "loss": 1.5657,
829
+ "step": 2300
830
+ },
831
+ {
832
+ "epoch": 1.123046875,
833
+ "eval_loss": 1.6226788759231567,
834
+ "eval_runtime": 586.4284,
835
+ "eval_samples_per_second": 3.494,
836
+ "eval_steps_per_second": 0.438,
837
+ "step": 2300
838
+ },
839
+ {
840
+ "epoch": 1.13525390625,
841
+ "grad_norm": 2.8930952548980713,
842
+ "learning_rate": 2e-05,
843
+ "loss": 1.4579,
844
+ "step": 2325
845
+ },
846
+ {
847
+ "epoch": 1.1474609375,
848
+ "grad_norm": 2.8736538887023926,
849
+ "learning_rate": 2e-05,
850
+ "loss": 1.5127,
851
+ "step": 2350
852
+ },
853
+ {
854
+ "epoch": 1.15966796875,
855
+ "grad_norm": 4.384296894073486,
856
+ "learning_rate": 2e-05,
857
+ "loss": 1.5988,
858
+ "step": 2375
859
+ },
860
+ {
861
+ "epoch": 1.171875,
862
+ "grad_norm": 2.728992223739624,
863
+ "learning_rate": 2e-05,
864
+ "loss": 1.51,
865
+ "step": 2400
866
+ },
867
+ {
868
+ "epoch": 1.171875,
869
+ "eval_loss": 1.6226541996002197,
870
+ "eval_runtime": 586.345,
871
+ "eval_samples_per_second": 3.495,
872
+ "eval_steps_per_second": 0.438,
873
+ "step": 2400
874
+ },
875
+ {
876
+ "epoch": 1.18408203125,
877
+ "grad_norm": 2.651820421218872,
878
+ "learning_rate": 2e-05,
879
+ "loss": 1.5226,
880
+ "step": 2425
881
+ },
882
+ {
883
+ "epoch": 1.1962890625,
884
+ "grad_norm": 2.717193126678467,
885
+ "learning_rate": 2e-05,
886
+ "loss": 1.4966,
887
+ "step": 2450
888
+ },
889
+ {
890
+ "epoch": 1.20849609375,
891
+ "grad_norm": 2.9759628772735596,
892
+ "learning_rate": 2e-05,
893
+ "loss": 1.526,
894
+ "step": 2475
895
+ },
896
+ {
897
+ "epoch": 1.220703125,
898
+ "grad_norm": 2.8832080364227295,
899
+ "learning_rate": 2e-05,
900
+ "loss": 1.5452,
901
+ "step": 2500
902
+ },
903
+ {
904
+ "epoch": 1.220703125,
905
+ "eval_loss": 1.6226392984390259,
906
+ "eval_runtime": 586.3744,
907
+ "eval_samples_per_second": 3.494,
908
+ "eval_steps_per_second": 0.438,
909
+ "step": 2500
910
+ }
911
+ ],
912
+ "logging_steps": 25,
913
+ "max_steps": 4096,
914
+ "num_input_tokens_seen": 0,
915
+ "num_train_epochs": 2,
916
+ "save_steps": 500,
917
+ "stateful_callbacks": {
918
+ "EarlyStoppingCallback": {
919
+ "args": {
920
+ "early_stopping_patience": 6,
921
+ "early_stopping_threshold": 0.0
922
+ },
923
+ "attributes": {
924
+ "early_stopping_patience_counter": 0
925
+ }
926
+ },
927
+ "TrainerControl": {
928
+ "args": {
929
+ "should_epoch_stop": false,
930
+ "should_evaluate": false,
931
+ "should_log": false,
932
+ "should_save": true,
933
+ "should_training_stop": false
934
+ },
935
+ "attributes": {}
936
+ }
937
+ },
938
+ "total_flos": 8.924062136972083e+16,
939
+ "train_batch_size": 4,
940
+ "trial_name": null,
941
+ "trial_params": null
942
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de0b2104317241ff613fb434c0319adc80836c4f3c6e7859e72a0d7bb2a1c248
3
+ size 5368