File size: 3,529 Bytes
e62a848 8f34024 a7509fe e62a848 a7509fe e62a848 a7509fe e62a848 a7509fe e62a848 a7509fe e62a848 a7509fe e62a848 a7509fe e62a848 a7509fe e62a848 a7509fe e62a848 a7509fe e62a848 a7509fe e62a848 a7509fe e62a848 a7509fe e62a848 a7509fe e62a848 a7509fe e62a848 a7509fe e62a848 a7509fe e62a848 a7509fe e62a848 a7509fe e62a848 a7509fe e62a848 a7509fe e62a848 a7509fe e62a848 a7509fe e62a848 a7509fe e62a848 a7509fe e62a848 a7509fe e62a848 a7509fe e62a848 a7509fe e62a848 a7509fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
base_model: unsloth/mistral-7b-v0.3-bnb-4bit
library_name: peft
pipeline_tag: text-generation
language:
- en
---
# Model Card for Quantized Mistral Fine-Tuned Model
## Model Details
### Model Description
This model is a fine-tuned version of the quantized base model `unsloth/mistral-7b-v0.3-bnb-4bit` using PEFT (Parameter-Efficient Fine-Tuning). The fine-tuning process targeted task-specific optimization while maintaining efficiency and compatibility with resource-constrained environments. This model is well-suited for text generation tasks such as summarization, content generation, or instruction-following.
- **Developed by:** Siddhi Kommuri
- **Shared by:** Siddhi Kommuri
- **Model type:** Quantized language model fine-tuned with PEFT
- **Language(s) (NLP):** English (en)
- **License:** Apache 2.0 (assumed based on Mistral licensing)
- **Fine-tuned from model:** `unsloth/mistral-7b-v0.3-bnb-4bit`
### Model Sources
- **Repository:** [Quantized Mistral Fine-Tuned](https://huggingface.co/coeusk/quantized-mistral-finetuned)
- **Base Model Repository:** [Mistral 7B v0.3 Quantized](https://huggingface.co/unsloth/mistral-7b-v0.3-bnb-4bit)
- **Frameworks:** PyTorch, PEFT, Transformers
---
## Uses
### Direct Use
This model is intended for text generation tasks, including:
- Generating concise and relevant highlights from product descriptions.
- Summarizing content into well-structured outputs.
- Following instruction-based prompts for creative or structured content generation.
### Downstream Use
The model can be adapted to specialized domains for:
- Summarization in specific contexts (e.g., e-commerce, reviews).
- Instruction-following generation for business-specific tasks.
### Out-of-Scope Use
- Tasks requiring factual accuracy on real-world knowledge post-2024.
- Scenarios involving sensitive, offensive, or harmful content generation.
---
## Bias, Risks, and Limitations
### Bias
The model may exhibit biases present in the training data, especially in domain-specific terminology or representation.
### Risks
- Possible generation of incorrect or misleading information.
- Limitations in handling multilingual inputs or outputs beyond English.
### Limitations
- Designed for English tasks; performance in other languages is not guaranteed.
- May underperform on tasks requiring detailed factual retrieval.
---
## Recommendations
Users should:
- Validate model outputs for correctness in high-stakes use cases.
- Avoid using the model for critical decision-making without human supervision.
---
## How to Get Started with the Model
### Code Example
```python
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the fine-tuned model
base_model = AutoModelForCausalLM.from_pretrained("unsloth/mistral-7b-v0.3-bnb-4bit")
model = PeftModel.from_pretrained(base_model, "coeusk/quantized-mistral-finetuned")
tokenizer = AutoTokenizer.from_pretrained("unsloth/mistral-7b-v0.3-bnb-4bit")
# Prepare input
prompt = "Generate 4 highlights for the product based on the input. Each highlight should have a short text heading followed by a slightly longer explanation.\n\nInput: A high-quality smartphone with 64MP camera, 5G connectivity, and long battery life.\n\nHighlights:"
inputs = tokenizer(prompt, return_tensors="pt")
# Generate output
model.eval()
outputs = model.generate(inputs['input_ids'], max_length=200, num_return_sequences=1)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_text)
|