{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMQAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "sb3_contrib.tqc.policies", "__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x7d5ef29cb7e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d5ef2b75740>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVbQAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKE0AAk0ABE0AAmWMCW5fY3JpdGljc5RLAowNYWN0aXZhdGlvbl9mbpSMG3RvcmNoLm5uLm1vZHVsZXMuYWN0aXZhdGlvbpSMBEdFTFWUk5SMB3VzZV9zZGWUiXUu", "net_arch": [512, 1024, 512], "n_critics": 2, "activation_fn": "<class 'torch.nn.modules.activation.GELU'>", "use_sde": false}, "num_timesteps": 500224, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718729374336501097, "learning_rate": 0.0005, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiTQABhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV/mgAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgAMAAAAAAAA3NU/vU8umz34WQk+c18UPgP8Q73iwKM8DJCtPaCAaz3kn6Y9B0DYPcvzzzzfwaM83XpvvB2dpz2Ixxo9TeT4vVNYlr214Qk9m1zNuUIqjz2NwKM88aoSvuHTmr0K16M8uQrkPQNwD74VwaM8lcoYvpjC+j3MwaM8if0NPW60dj3CKaI8gv/4PZH7FT6ZwaM8wUMHvLLPNb1Yvf09k3OzvmDPwj7NkMK+Sc2Gvf0riT0a/AQ92ym2vVoL4TsbQts8nqwNvCA7AT7wwaM84usIPt1qmD0K16M8juK8vT7xCb75kkM9GtwTvk9W4b3ZwKM83Nx0veaJy70VwaM8uhwGPvNYDj4VwaM8YBDHvfchjD0Az/k85EQVPJeUyb24Jqg86s72vehRyD3pwaM8vN7xPGs3nj1uwaM8fS23vWfu3T0K16M8eN6DPWSyKT1QwaM8JK9XvW0FRDw/S8U8Urv7vU8z1r3iwKM8vn/AOwzDvz0K16M88O7MvVvie7w+2Fw9Ko2uvfDZ2r2HwaM8OzMnvTQhsL35QpU9tupLvItnRb1ZLpg8QoOmPWqyRb1gwaM85fq/veET7j3wwaM8wmDoO+g0nT2/s8U9e1q7uxSp6LtBfdU8u061Pfe0UD3znqE8oQBPvS2yVT3Sc+U8mRjCPdnmab16jtA8ZN/EPQSdGL4K16M8YCDmvabTib2Etqw8AUj/PYcmiD2Hqk89tsQROzDQmL0VwaM85WMPPsOV5T0K16M8pgaXPBh80zyIzF89Xj5LvZDM+r0LJqI9s7mHvXLezzwK16M8u+/avQipMTxgwaM8/lQMvjEHFj3XCUQ90F8PvkuCPb3XwKM8kAZMvVBpir2C/ds8eXbivUh+z70K16M8ePywvTNG8z3rwaM8fWGAvcY/r70sl4U9LL3svRtol72eu6M8CqYnvBdT3zxR0fc9jKGjPQo54Dy/3kc9zgruPXceyj0YwaM8sAMFPlOIyL0VwaM8b4vFvUW0azzZwKM85i3hO7YskrviwKM8584pvWdYZr3SEgc9LiTyPU69DbylwaM81j0QPbFb3D3iwKM8ZZqnPZ/QdTytBp88mpHJveM3MrxuwaM8gdWEvMnoET7iwKM8BpnGOxh62L2FwaM81b6ivQ+oMjkK16M8TdMDPilYzL0swaM8HRgPPeMbYj3BonM9aa0gu9cYwLwVwaM8dRWgvYqZlj3jpaA89gyDPZYKxL3WYUY9IJy8PZTarb2xCEk9BEb5vftCTb22kRA+5giovSbmD76twaM8wXiBPUdK3DzEwaM8ohKhPSB4qT0VwaM8BLGOvQKH2L0VwaM8mlpWParPSb22DqU8D9oQvahSBL6YF6Q8MCnZvWqGAjwjwaM8Bh4EPp8Fu723/eM8yUX2Oz7fyj2RwaM8hZ4YvQNq0LzmXVA9SJF1vF09Or0VwaM8aqFyPZK1B74VwaM8+Wh9vWoSXr1gwaM8lOZPPCEfjDwK16M8AMqGvJIQpb2TwaM8YfnLPCGkjz2YA+I8q72kPdlmiT0POp881+/WPFJTTz0K16M8PfAQPgDe+D2UwaM8pNkWPRu8Cj4g4VI93uCmPROtErzqwaM88e4UPsNt4r0K16M8oJWLvb8TCr4pwaM8g80MvdERnD3iwKM8KzVqPbNSn70VwaM8U+ESPkY2pjvhwaM8aQGlPYB4nT3jPmI98aItPbUkrz0TwaM8G9fzvRn34T0VwaM8kBUXPhjFkb3dwaM8gEedPdD+pz3hwtA8MLPIvSU5vb1CrAw9FLSgPXPW+ru6YCI9TPGNvSnomrzhzhE9rJeHPSuwE76ZwaM8VK2SvQHTbbzcsKU8jWUZPg0mAz7ZwKM8uWnPPZbVDD7rwKM8+RCHu921cbwK16M84tgFvXobtbxKWOI8efDUPNdu6jz0waM8o4RbPCrQAz7iwKM8Kt+BPdoXpjysXyQ9vmnLPbCYB77iwKM8uvIEvWIawD2GSlA9Sx8FvXjjGr2eTqE8HcfEvW5hHb6QYoU9L9OmvRxhE700QaE8ckEtvamyFD1Gu6M8CC3xuwmR9Tul9Dg9LOXKvqnFQL6uwaM8u6GKPZlSUL1gwaM82l6ZPepRPT3iwKM8i/SGPVsgpb3xwaM8iWcyvUJuozyPLlg9iy7KvElqtT3QaUc9muDTPaAknz0K16M8iIoKvrFECL7mwaM8/Rd3vEAsYz2ZVf48wbBDveNezD2HwaM8IAa4PRV8srzmC6M8cFCuPDvA4r3iwKM8PQYEvlXbDD0K16M87RtyvQJ8ezuxOLU8ICS4Pcv2/b3iwKM843sSvs6w9D2kwaM8sEM1vUl1i71KWNc8raCwvOWB6L3iwKM8JshzvQ5wBD7KwaM8S8l1PT3JLL3aRpY8xiJovb4DWb0HvQE9IWWXvY7B2T0NK6I8J/SLu0v4MD3iwKM8oPRjPUTO/rviwKM8xZJJvQHWir1P2QA9BSsWPLH1lT2h/bA9fI5AvZw8wDziwKM8VBg8vCuABb4VwaM8bpmiPZ2Heb1uwaM8t3v6PSgaQ70VwaM8hmoOvQAbjj2eu6M8pjrhPVj5yj01Sd88QTbPPT8eDj72waM8kITmPFak0D3uwaM8fW8LPiQ0ob3gwaM8YxvdvduFEz7PwaM87IX7vWvaczvM/KI8UqnLOdRrOj0vwhc9t+HyPPdNKb3C16g9wbaqPN8FB77UJKc9EaqlvRZMnb0K16M8CMWZvU+WjD2w3ww9iKk8PNwaszkVwaM8M64mPfbsdz2HwaM8r0SYvXL2wz0VwaM8kAHzPQeED77ZwKM8uzMLPuJnR72rubM8R8+OvckQajyHvKM89NQWvotU270WwaM8IWvcPojdlD6/kMK+xTDsPHIrAz4rtBk+Vh0CvtdnXj3iwKM8LIgHPlXVDT6ZwaM87N0UPvpcAb7awaM89xYAvp674L0K16M80qFGu0z4vr0K16M8HQGSvdQbETz2kGI9lTTlvSRlEz7ZwKM8d0l7PY51PT23Wm49z/QJvlJkrD0OwKM8hOX1PILC8D0BwqM87v0VvuwGAb5SAgw9hTKyPRZH473iv6M89cddPL55z7wVwaM8CP3/PPdMoT30waM8umCBPFE8BL2TwaM8Xnq+vWSvjT0J3qA9NsnpPX1FKr0VwaM8UO/8PXsRj7ziwKM84zkLvjEkn7wrwaM832pgPfsAhb2bQvs8DyQCvQXBpr3iwKM8EnuKPQX5Qj3iwKM8vYWaOtvRwbziwKM85XekPT0aFz4gwKM8EkKgvZP57j3iwKM8mJiruxiTuj0VwaM89Dh/PTHb/L1Whj89XcsYvK0cOb1zYqM8N0LzPZlrIbnCmLI8yucMPowohL3XwKM8KHLHPHDQzT0P5X89H9wpvmTeRj3kVpg9NRNXPbmQBb7iwKM8bW0LPKkO1bzeIw09mUr/vV75ED7XwKM8Wwn9vf5Nfb3jwaM8V6wDvl29mr3/waM8Ln1XvbD5tz0K16M8OoHcvTSB8j0K16M8qNsGPXec5rxRKio+5Tv0PaqIjbxaFeo8X4KbvHpUNL3RgAQ9ybaiveNXLL0vIjw9Lx7GvS2DpDy+tJc8fVqMPbJ4FT1b2Bo9kYyQPWWN9T0K16M8gKTqPRkV470K16M8W/MAvt49tr35waM8wN/nPJvfWryTwaM8gqGFPVHGzT3iwKM8ArCAPUEqDb7owKM8J8Vtu9O9Ub3iwKM82XixvexLBL5gwKM8OLZEvVO7Er4K16M8huoIviKEyb0K16M8g4ymPPaPlr2g7Z48brQePNEwCbzvwaM8xbS+PRCxsD3iwKM8vADLvXSgbb3wwaM8G4oIvkZfvr2UwaM8LvnYPbzIGL7iwKM89fySvHmUT72+WEY9d5YKvtrGrz1OwaM8tMhSvdac7D3iwKM8mcvIPbFkhrzkwaM8YEP0PQwl1j3rwaM8Y3hQO4kBHT0VwaM8Lu8APgaaV73pwaM8R4CWvQ1upryf6Ms9w7SAPeiI4b3yJNc8kyi6PbVQ+zv1wKM8l5fyPTw9BT7iwKM8tofqPG2QIzz+Ywc9vKBAvbBNBr2IL4Y9yeA3PYrvOjya7/88dGDlPDs7Uz0VwaM8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYk0AAUsDhpSMAUOUdJRSlIwMZGVzaXJlZF9nb2FslGgHKJYADAAAAAAAAPqaN72GY4U9pEI+Pnvn3z3HS2M9CI81Pi3WBD5ZO1s9Ml4mPq3/2bzNEOI9CtejPBFxDb7TBAw+CtejPPKy/jzEFrO9XiIpPg9mAr6Ybaq9rYRUPhpV8717Ooa7XcmRPUeQhD1fGLC8CtejPG1e2L0qRuO9CtejPNviFT6NdYC9CtejPBULcb3L4Fy9tPIlPT1mPT1NfT69TJENPop+XD2hnro9CtejPCg+Sj1tgPA7rI8QPdRAyDxUORE+i/tBPVNpF75jM8Y9G2NWPp6csj35ZI29TrT2PcerCr74ZAq+CtejPHhNwDxgd8i95FkdPvyfF75ov+29EctfPtBXBz6RTXW8pXouPdjL7D2MohQ+sqgCPvIWrr3e9Jw9CtejPMyFAD5vt6O9TZ7VPGGF1r3RJji8UZRcPvuX17xmgRC+UttzPSSjFb5EW6O9CtejPNhiBrsvveU9CtejPLDxJL3/chi+KpG0PTVptz02zIs9CtejPCvlxL0gSMQ9EtxXPhPEmD2M/JO91u1BPhadgj0yoYq9U1w4Pu/4DD6+tui9JGIzPQMUOz23ygE+CtejPFirFT7Ca289BKRaPqXTtDxWBms9g7UXPvNX2z04p/i9jfskPYI/Dz5P0G89CtejPLogNz3jh0e9KksGPjHIZ7t7G+29U5GMPXw2/D3DYaS9CtejPI4DgL3HK329CtejPMy0kb2fzqQ9+TtDPsThQT1lnbM9eDbdPcEEED6puTY9QCJUPpo/WT2o1Ao+1QTqPRw9Ar4nQRi+QwhBPv2u5jtMpYC999rNPQ9aXT0CIxO+JIfxPY2PBr4aEhI+g8PoPSnM9DvUbfI9JeKKPVkY5L0q8ta9GZSiPQH+U70nYdW9JM1ePuYM6LyfLwU957S7Pap7Zr2cEg++mwGePWgftD3o2BA+CtejPKerkz2z2xI9DK4/PooJlT2WLgk+4e2xPa73U70Md/o9lie+Pd7Tqz3fB2g9NW1aPtdvBj6ocLQ9U2hqPVX7C74USbI9R3UVPqJ20TthX7k9o0KzPeF1Fr4taFE9CtejPNHMFr6HL6K9uVk2Pq6vBL4cDSi9CtejPDezK7x8hKm9G9+HPZO+6D32a8s87fARPvRg0L2nDli9p4EaPtzOxr20S5m9lV/NPa6ovz1psaQ9OjVTPm3igz1Gosg9SxYRPqC1Kj2dto29aqwgPmUb5zxaUA2+CtejPCk6AL62Fw2+q8IAPn5tCD5us6G9k/nbPYu+1r3oXqG9RuRXPnSjDj6Em6y9t/KnPVnrsL2Rhpk9CyokPVXyBj7oZgm+vNbsPXecwrw6Yhg+/pUqPkz3qT3qA929CtejPNKmqDzGJIK9uX9pPS9Wtb35rME9pkz0PPqSX7yNic+9pPfAPRqKhrwtLQg+0uBGPhz+Zb1buhO+cbRFPrumhT3y9RG+CtejPE3J7L2FyiU9Ps6rPPiMXD058vQ9CtejPIGOGD7EhdO9CtejPOy+IjyUHq87CtejPGbyub16QtA9Jgr8PKJr0j35jxU+CtejPOg8jr2IE7a9CtejPHU7/bzDvJQ8q6M4Pu/U2Tx/17g9Ozs2Pqru3L3XNvk94CBzPR/0T70xuNO9CtejPGjPmb2OQ+G9IbHjPRRbR737VU29CtejPHFeCD5T9Iu8CtejPLRO2z1UYg0+mTL2PfL+jz2zmT89GYEDPvcp6b1/gIO9MCATPnN4yj0ql6E7CtejPNv9DT49BU+98gG2PefUzr2jusU9+EaBPU4lGj2UqDa9E/0PPhZgQT3jC7W9CtejPNSBzbvRhwm9dgOJPaeio7uo74u7ObmgPcqtgL1Ww+g9kU+KPQ6DrzylkeC84wEMPi/KF74HXgU+Xd0oPTFU3bzDQe68CtejPAe1VDw84XO9kHEXPYWx6b0Np8I9MjlzPfcRCD7F5/094rllPRr7l728Sag9HS8gPbi6MT2FKXm9RaqZPetBpT15Y9k9QiUpPhdp4D3rJzy9CtejPCWgXrzKTwm+59osPuzo8D1K8pM8CtejPD7NAr7H7Zk9cI8jPiTdeb1mY048kuv+PNegHrwoohG+xhZePvk5nbyHHJ49CtejPEs+DD38mH88wttRPkYrCb5rZSM9U2rZPcXnpDy2DKA9DXpJPvon+72b3so9CtejPAuBgD3or2q9TxlIPod6aL0wE+49AN0RPjiOwLw109s9CtejPBLr770bQAa9cmiyPNKVFT5i/em9voVvPehqgj3R75M8i7YBPgTJmzx6AgW+3jCMPehSgbwmQg09CtejPNw6EzwGQlY8CtejPHS+Eb0aH4U9CtejPP8A/b0VU429CtejPGU29r1wkR69yhcePklKq70hWBK+AOSfPVErxT25sNG7CtejPAQA372ZzEK9CtejPDxwBz6ScQo+trl1PSGSvb2F7ea9a8lDPk98FLyNI8a7QtySPWY9w7zvSZG8/JYUPp2Kbj1AVl49n8AZPszF2z2NWJo9xORfPUZ2grzuoBe+DkgTPmTwxb3A5FK7UmsoPhaNY7uaqxe+CtejPJ8SgD0FxR+9tRZgPnFdfb3eCYG9HcI+PhnUHDtwQZm9/pjdPXaD+L25dQs+yg5PPut4vT3+Qb85Q1X8PfiFFD4+p6s9X98SPgC1C7zPFhi9+GXFPJMO4L3msKw8qjk6PVei7DwjSxy9cXpZPs+VDz6HIAK+qcFAPjoFBj43bpc9G2/GPUOYLrs1GYS9skjtPeNHjD1M+d29mVaGPUlQlb0flvs8SncPPh2/vD2mrsG94hE2PsEF5b1mJok9CtejPIag+b2t5wo+MipFPiNFmTzeDbW9CtejPDaKgTtI7hE+CtejPDg7GD68USQ9CtejPL5yBD5c+PQ9uhUqPkUuLrzRPLm9CtejPC2n273Aa469CtejPKGIwLzI0Aq9LoSvPY+2Hr1cMNQ8CtejPF8NDL6lwAY9CtejPKoM87zYfwA+7z87PkY//D2TYDS9opjNPRN0lT2Y3Zo9OnwHPls5Sr0H1e499cbuPSlGDb6AZRa+g28XPjWgSL1/ePm9KmZdPp6R2LwB1ww9CtejPMDVgj075QS+CtejPJ1egb20bpa7nc1cPsx0STwp6AA+YxrPPWPGnr0hagk+XFgCPjFMzD0vLAK+3f/tPU+Ktb0lpMA9CtejPGmNdby4NgO+WL8lPcA15T3hXLu9RyjAPf7jJz3xPKw9CtejPFa6rL3tcdm8SM4pPfdNZ70lgM09rkk9PtRFFj5W2Jm9CtejPPbBMT0ccmm9omnrPVtnz73c5o09JgM3Pk/i3TwiEKm9OftBPvTq0Tu5JaQ9CtejPEiYwLu7h709CtejPBtzF743CHI8CtejPANAGD7/r9Q9LKwjPrjXDb7pV/49ojBGPgpZDD5s3qy9jGNVPhxzFD5iNgm+MgLgPTa4DT6I49Y8CtejPKv2fDqyGmu9dfErPq1REz5MAga9Q4I4PtBMWj3oWxi9RDfIPQNkGD7cnGQ98gi6PWFwAD6Lniy9XtFDPvED9TvF0qA8TqZMPge9FT2YdNA9/0cFPaL8eryLhBE9QQcXPiGbsj19+Lk8CtejPOyPTz3/c9Q9CtejPMa9OLzNBnC9Rnq6PZQ91b2UqxE+zN4VPqXj2DzVtOa7wSQVPkeprb1k/+g9PW6vPTDjWT2mm5K9CtejPPrPpT0zTIs99Is8PjdyULw2Me+9hHZ5PdmpCz1WN9O8GTRLPs25B76yC8G8c5oJPurVsr3WR+W8CtejPOOXcj0cMpw8CtejPEL3kLs28KO9Wm8MPgQrlL04w6i9uHikPLsjZDyZcdK8G9I/Pojz8bld5Ak9pJkxPucrJD2GEPo9NucYPmlutb1Wj9Q8OAFTPog5sj2G6eC9CtejPE9oWTxBoAU92qX5PF7nrL3H5I88UZg1PhFK5L25fLI9tRQgPWBPq70A2Q4+RD+sPe7oZbs/SRQ+qYxWPloxX73F6Lu8W3ZXPojGAL7pbfG9NMYXPjC6kL2u3++95xxFPt2GDz6doeO9/2QnPqjaaT1ex4O9CtejPDjp3r2pFQG+ofLvPRpf0j0GZgM+CtejPN3w8T1Cowc+wVzuPZRoDk0AAUsDhpRoEnSUUpSMC29ic2VydmF0aW9ulGgHKJYAUAAAAAAAAH/fRr1KQHU9/Nz0PbEbLT8bS0O/p3k9P/ziHD3c1T+9Ty6bPfhZCT6cHJK7TlnaPS52tDy6ky0/w70hv5jZPT+ko+g9bkx8v7GAYr89Clc/u9DJPTipAr1qRw0+JpWcvdpyXb45B7C/bnSdPXNfFD4D/EO94sCjPECWljZbOBW4tO4Bt8gf2bU4xjc3EIqAtf84IzJqz0i4z5/KuI/CdT9Ut7M9LKeRPYtggj2WPvA+S72aPk7sWz+9UA09DJCtPaCAaz3kn6Y9zmk4vVumhr03pCi9k57sPogntz2V0V0/9/wRPmJ6BD3Z1eM+9ihcP04T8j1k/PE8/WlyPFQU8r4t0zI/v4K+v0etoT0HQNg9y/PPPN/BozyRwtqw6BydtrNBN7cCn4g2xL7OsEeqiDZolaAzwnhVOQvLVK8fhWs/MF6KO7IEjz0tiMA8zNZCv6jvOj+/QD+/bekOPd16b7wdnac9iMcaPQlfuzzi/em9/7iFO9igQb8EU1c/Yd07vxkslr2g+0s/6ukUP/YoXD9Kbe29DS59vQiNlTzBAEY/6a6MPdOMJT+WYxE9TeT4vVNYlr214Qk9vLvuO3DVXb7ts5I7SP9IPzazWL66uSY/XyqQPqXS7T4dQhY+rkdhPy4N4TynQ2I9DFHnPYWhtb4wnOg+F0ygv3T6nT2bXM25QiqPPY3AozyYx523G9D3N3HB8Lb4WVo3pg8duJlmbTcPr606YB0iOoTuy7iPwnU/6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAPGqEr7h05q9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD+5wn497yG4vCwaSz4UYZ8+rjp/vyW9Ij1TkGo6uQrkPQNwD74VwaM85o2WNlpZAbj8JYK20o7Atm7GNzdse6q2MnVbMw4rhblyy8q4SOF6P5fc1L2crAU+OV30PX6JTb90y7g912xXv+Iooj2Vyhi+mML6PczBozwAZVc3fSWRtuHZrLdO6zw2JSqNNunZ4bEyerA0rSSNrqMbDrkfhWs/xtgVPYOPKj1SuyQ9s4J4P1ntQ7+GLKE8trHzOon9DT1utHY9wimiPHz9kzxGdbq8ULkZPpuzfz9tuEC/Ft8HPMdrab/oO2U/dwZZwGZmZj9CcdA9t6eUPUkBSz5ObPQ9VBwfPyd3mr81FpI9gv/4PZH7FT6ZwaM8qRerthFrmrd0R423dbItOE4V4LeJQay34licOnKL8zpr+A65j8J1Py2xZzsNrhW9HTcDPrzfpD46Bgs++27zPYwcJD3BQwe8ss81vVi9/T0QKKi7ElYuvah0Fbuem6U+HpkVPg5I7z2JIFC7xPY/vj8rdj2F61E/56qEvjGEgL76rHA+Zk7UvseBGr/qO++9D6qqPJNzs75gz8I+zZDCvqXigrj2jxw3bYuQP94frzV82Uu3iEXYrMqfRq4fJbmv0I6OOI/CdT1glIW9JQVpPbVxiDzOwAw/x7HvvhbTGD+OMBg9Sc2Gvf0riT0a/AQ9ogamvBpnTDtdDaQ8/jwMP8Yder/HABk/vu01PSN4Wr9eNi6/9ihcP3Sor72UClU8765oPNTCFT/A7fQ+PSjpPubNBz3bKba9WgvhOxtC2zwZWhS6LldSvfag3TlDHRU/cG+LP5VS5j7GT3U9oGVGv1nPzj72KFw/644MPO3W5j1HggM8SeI9vAXair4k8iK/ffejPZ6sDbwgOwE+8MGjPOBSo7E3e1K2rIclt5r7ODbVd2qza+A0NnwPNzZ4hBA59u87sB+Faz/qch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA4usIPt1qmD0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPxIN473vPe29SGIqPdFs5r4YbK++oRHfPYPcDT2O4ry9PvEJvvmSQz3bO9M8JULQPtx1A7wOzu6++2nNvpsqHT5nFL88PY/1vzV6Pz72KFw/05+CvQGNz71Ho849bN1rv31OT77AuY+/qYujPRrcE75PVuG92cCjPNiXljY69xi4FsRCt6q7YbUOxjc3O9VBtC7N+DB3aBe3cpjKuNejcD8GVaE8c1zMvAgmKj6Tp4S//ECVvzFBm7+864893Nx0veaJy70VwaM85o2WNlpZAbj8JYK20o7Atm7GNzdse6q2MnVbMw4rhblyy8q4SOF6P3+SmT2RYsw8SapAPtj6pz2GjJE/Evx7v7nrjz26HAY+81gOPhXBozzmjZY2WlkBuPwlgrbSjsC2bsY3N2x7qrZHdVszDiuFuXLLyrhI4Xo/0EzTvShjpD2iHI48iWr5Pkxe/T5XUQk/g+cXPWAQx733IYw9AM/5PGAzx7tWCaq8LALLukkX8j7fBH4/S1QKP1rHV71M8Me/3vzPPvYoXD8cB3Y8fHOjvVkDqTvg4my877T1Pcl/+733/6M95EQVPJeUyb24Jqg8DarePC836DczWQ+9GLP+u7KHej4l6UM9lT4dQG4vnb2bhonAH4VrP9vfB75srtE9FLtYPeVNEb/kFqq8aAB+v/3Noz3qzva96FHIPenBozx58382Gf6AJmbFFjjAcgiv8ZBeNiqRXjY84S25v9TMsYW5WrBmZmY/LTx3PbmzmD0P1ok9Pyi2vjyHsz4oPqy/l4ejPbze8TxrN549bsGjPN4qF7Eig3+3YJsltx89XjeFtbqxLSpeN/p/jDQ1oC06ydrrsdejcD/qch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAfS23vWfu3T0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAP2k0vz0mED49FiGUPQnevb5IplU9TC61v76Loz143oM9ZLIpPVDBozxBQqgrZEWXtxcTLLegiYM3KWI1r8+KgzcOzGwxOIhNOjGgQ7HXo3A/1g5bvT63yjyU3BY8ngUCP96OMz8+ajs+8dMNPSSvV71tBUQ8P0vFPGrAJLrSlc68aGZUvBibBD/ahHs/J0Y9PpabHLxkw2m+M+/xPj0KVz/np7m8JxONvZNL+D09Phq/V+gBv9RlWr8Na6E9Urv7vU8z1r3iwKM8QJaWNls4Fbi07gG3yB/ZtTjGNzcPioC1YjkjMmrPSLjPn8q4j8J1P+pyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAC+f8A7DMO/PQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/rlm3vehJiLxEdBk9Us98PtfbDD825xc/WF4RPfDuzL1b4nu8PthcPZRSPT3vz5A8qUcpvX0EWT7eT20/vSUTPyu6l747kpm/HwmsP65HYT901lO9M+bHvTXLhj1GnDG/SUZHvfKrgb9tRaM9Ko2uvfDZ2r2HwaM8NHdtsRbPV7cEPx+3MKg7N81dWbGDtjs39DEnNP+bEjr1Lcew16NwP0mkPb3XOqW9YwZzPe+jLz9qYk09L49DP5w/Fj07Mye9NCGwvflClT3lEw68HgHKvUyVCLs61Co/L9nWvlRPRT9DERS+ojGyv8NDsD32KFw/zcgDvZWtLb23ORs9/LGvP2q0HL8+c849hR5mPLbqS7yLZ0W9WS6YPKisCj2qFsi9BcCPPKFkrj/7+bK/1s6HPZCjy7/hu4hAiZPFv/YoXD826L09piwzvTtgiz17eZe+xbmBu+bdub8Ga6E9QoOmPWqyRb1gwaM85zcbqmEVizdOKSS3LuFxt1fDaC9543E33TLgsev4PLrzXiWx16NwP0Q/vL06A9I93weIPNQyU7+Npzi+lB+Jv9/Noz3l+r+94RPuPfDBozxBBi+wXQlStoEkKLfKozY24IkgsKOtNjZymfkyGrAOOSqgvK4fhWs/7RosPHoGiT1Spqc9KQ8mP1ClYL2hWzA/Nl0bPcJg6DvoNJ09v7PFPdhJtLtFKym9+qcHPOJLIj+Ws+S84r8vP6vp4T1tB4m/7yXZvfYoXD/P3sG7H5JVOagNITxvBZc+qao5v4k1sj7hFhM9e1q7uxSp6LtBfdU8BKe0vKxoozweYHW86AeSPq42t79zZLM+geOVPkbO6L5P90S/ZmZmP2cgUDo1CKs9UbX1PFk8Zj1+CYg/TdjkPdOZjD27TrU997RQPfOeoTzEIFG8hp8aO/jJcj/pUN8/r+WOu+bWOzxH2Q4/Y17IPjY6mUFmZmY/BiJIvSlugz2Loz88qVvSPtAd/77v6sU+03IZPaEAT70tslU90nPlPEsqS71oDVm9LthevbJuuj6BoHG/XxLOPvI4cj8N4lq/mf9NP2ZmZj/nVLI9EjhgvSTqCDzAeAa/Br5Bv5nAtz5IghI9mRjCPdnmab16jtA8sievPP4Q9T2ktw67mR4Gvxwvt79j67c+TGQUPu/ta74nHCK/ZmZmP+pyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABk38Q9BJ0YvgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/I23WvdNlWr1OiIM8MawQP73Xdb6nXz8+LWsYPWAg5r2m04m9hLasPDIMWjutT684tpKEu1TVED/BkxO/Xc42PugDC7tPNfW+o8Qvvq5HYT9tme89bL12PbvqCj2zOYs9n6kDP9a5Sj8nABs9AUj/PYcmiD2Hqk89HpD5O6QLpT00DWG8nIB2PUeior3uJUw/vkd7vMyMF7+hi0m+PQpXPyqZHD2cvsS8ZS4uPtDNpr64kYe/Od2hv0Ktaj22xBE7MNCYvRXBozzmjZY2WlkBuPwlgrbSjsC2bsY3N2x7qrYydVszDiuFuXLLyrhI4Xo/6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAOVjDz7DleU9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD9Wd6Q8H7QLPJsjGT36dmo+e2xMP04KWz8XsQk9pgaXPBh80zyIzF894iq6PGFB07z3noK8jqgaPkR4Uz8qbVk//qZ0P3/BXMBs8yI/rkdhP+LGSb0cBe69V9h5PVZryr649lC/578qP6KGFD1ePku9kMz6vQsmoj2V/b+7ZlmJPdyVTTyFyOG+6rDivqPIKj/2XUk+bJkCwOssgb/2KFw/6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAALO5h71y3s88CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD+WJWa9QF5IPK6ImD12sGm/x1aAPUkGd7/Vi6M9u+/avQipMTxgwaM8UcMaKq8Hi7dC1Si3W8lxNwwMba+ly3E39P/mMU7mPDpYPiWx16NwPz9CFb7+8yo9FF0GPeJ2H77MuQ4/TTtOP0hdFD3+VAy+MQcWPdcJRD3FIjm72NQCPvGYHDzrx0O+oK+aPxFnUz9nOXe+f90KwGLVzT6uR2E/4UHUvRetRb3SgsE9uE1Yv/FpBj5zdFe/782jPdBfD75Lgj2918CjPCqYljb5qxm4RsyBtwVtOrXqxTc3bygSsyvn1S9nV+S15ZfKuB+Faz/bkki9TntZvdNeSTwGAqS/GcOHv61r0z7okBs9kAZMvVBpir2C/ds86gDRPBy1DD4qBOE8D5WkvzZjvL8jYtQ+gsMaPua7rT4vVI6/ZmZmP+pyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAB5duK9SH7PvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/BhKtvcUD5T3vvKI8q+YHv4coI7/ZGYS/yqijPXj8sL0zRvM968GjPLPBobJFCW62QW0rt2s8TzY3R0gy+AtONmRT0bRGYiE55fIhtR+Faz8vi2m9HyzJvU+IQz0IHSM/DP4hvw74JT9EPCE9fWGAvcY/r70sl4U9YG1xO0xyt73C7ss6vuQ2P122i7/iqzE/dZ+tPop5b0AHi2O89ihcP9+fqLvpS6y8hMFEPqu1KL8qfvm+fzqmPrfrjz0svey9G2iXvZ67ozwx48i4aEIhODD8WratN9O1rPwfuacLEjlQ8Pg7oEn2OU460bhI4Xo/1zb9u93YNT2u1tk9SNEAP1+pYj0NPyQ/htYgPQqmJ7wXU988UdH3PTaQvrnlS3i+lrNaO8nx+z7n8wc+oI8jP5jimD1jUz+/8Tr0vD0KVz9UtZM9kIoKPKaa/Dw0Gio+g20jP/YSQD9PMBo9jKGjPQo54Dy/3kc9Vw6lNvhdTD3TlG08HJ4KPuZ5Nj/3YUI/OwVAPTx3h78EaBM/rkdhPzVM6T0elr89rn6jPYI3Tb4M86E+a1C8v6uLoz3OCu49dx7KPRjBozyy1u+xiNDCt03hNbf7oak3fpyJM0kNqTc/jEq253aEOj8QI7XXo3A/HFChPYGIuLyj0kA+k5DpPvmjjr+dto+/x+uPPbADBT5TiMi9FcGjPOaNljZaWQG4/CWCttKOwLZuxjc3bHuqtjJ1WzMOK4W5csvKuEjhej9jZnm9PZQ9PPVa0T1JF2i/tUodvlE+gr+Ki6M9b4vFvUW0azzZwKM82JeWNjr3GLgWxEK3q7thtQ7GNzc61UG0Es/4MHhoF7dymMq416NwPzbUDz1nBEu7CoDsPaixhr5c9pQ7Ebidvxylmj3mLeE7tiySu+LAozxAlpY2WzgVuLTuAbfIH9m1OMY3NxCKgLX/OCMyas9IuM+fyriPwnU/GlQrvRRLRr0Kw7E8G17UPi1PLz/kgRA/JE0MPefOKb1nWGa90hIHPcPIWzq73Gm9DYHqOcSv0j5TD2g/TcUQPxERVr2unoW/X2s1P65HYT8vzwY+AbAvvB6sUT2AjoG+T9TSPZYou7/2zaM9LiTyPU69DbylwaM8zQLhpccOKrcDN1a33N8TNwwYHa+84BM38FLBMYcO5zkxOHewH4VrP1UNSz3HSoo9qoryPVX6wb2Pttw+U6KmvxJroT3WPRA9sVvcPeLAozxAlpY2WzgVuLTuAbfIH9m1OMY3Nw+KgLViOSMyas9IuM+fyriPwnU/L3O7PTvSzTnPIy09uLCXvgqQzL0mcgA9P8oMPGWapz2f0HU8rQafPCNEV7ze0fu7durJu96Uor6hFUE+rnzSPDN6xb5NA58/HTBGvsP1KD+QWJg8lWyvvAySKj6JgoO/YUALv8QLn7+86489mpHJveM3MrxuwaM80GWAt7ARPDfHHbM3oHW5NyFnvTdtfo+18fhAODqX0DhUChQ6SOF6PzJ3zjwC35k9c78DPr5CAr81sUg/Hs9UvxhroT2B1YS8yegRPuLAozxAlpY2WzgVuLTuAbfIH9m1OMY3Nw+KgLViOSMyas9IuM+fyriPwnU/DMAVPVFHzr2NkHk9jGeivrNerL4oTqW/qoujPQaZxjsYeti9hcGjPHWuZLLU/1y3v60gt0YHTzczuxY1EeQmN4/zure04yA6OxOqttejcD/qch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA1b6ivQ+oMjkK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPxaL6j1wV5q9ajagPXV9OL5hZzK90ue9v42Loz1N0wM+KVjMvSzBozx2l8YuFwqzt7qOMrcht5s3WFzjMSSqmzdYPbW0yk9zOsUeibHXo3A/3D8QPXbAGD0E6is9sBKyPvdiIz/jxmA/l28cPR0YDz3jG2I9waJzPeJLNz0UG786C2WjvFyYpj7RcEQ/T8RlP5pvZb8ObJa/SB+UP65HYT/ZwUg9HFqpO7nQMj4sXT++acQ+Pbenor+aHEQzaa0gu9cYwLwVwaM85o2WNlpZAbj8JYK20o7Atm7GNzdse6q2MnVbMw4rhblyy8q4SOF6P02+n72S/qU9IEWGPAngrD6I6Fi/G81SPaguBD11FaC9ipmWPeOloDz157o78RHou79vpjzCLq0+gT2vv7LIPD2bfcE+UMkDPw8Ju7+uR2E/JepAPbBG3b296gk98vEIvm01CL/LxhY/jtkbPfYMgz2WCsS91mFGPfUvVDyTnbw9zhDoO6ZsQb443A2/yFgnP03XQr/NvYLAGyuaPvYoXD8vg7c9m1yMvcVDBD2UsA4/rS2WPheeMD8K1Ro9IJy8PZTarb2xCEk9sbZpvWvBm7sBB4U5udcLP/uQYj67hjE/gW2svZ5ah78wj7c+rkdhPyq17L2sL4S9eSABPkt5Tj4p1By/b95EP8ogIT0ERvm9+0JNvbaRED7/cgm7iskwvjS1cDx4I1E+VuWFvxcNQz9CLm+9J8ZavwmIKr+F61E/3YCvvQ2OAr4KRlU9gk4xv53nEz2Ng4m/vM2jPeYIqL0m5g++rcGjPAf1g6WKZhy3MflSt7r/BzfETQyvdwAIN4EgrzE0gNQ58RpRsB+Faz+4ZpM9OqreO6E6PT4lSAE+vqeNPTVopL/h6489wXiBPUdK3DzEwaM8FkCpN1sj+zZua/Q2ww2cN8kuAbjuI5Y38WoCO05YnDqmI5w5SOF6P+Iyhj0rxMk8qkw6PuuCE77JtZA/HAWyv8Drjz2iEqE9IHipPRXBozzmjZY2WlkBuPwlgrbSjsC2bsY3N2x7qrYydVszDiuFuXLLyrhI4Xo/CJaUPDXDy7ypNyw+WTNgv+TWh7+nV4m/wOuPPQSxjr0Ch9i9FcGjPOaNljZaWQG4/CWCttKOwLZuxjc3bHuqtjJ1WzMOK4W5csvKuEjhej8IoII9wLSXvRfvKT2knYk+VMc0v3A417tQdIQ3mlpWParPSb22DqU85j8HPCbrablQsBC+WDTBPhfpOb/IYKe9jFiEwMwnBT/KjhLBzcxMP853Jr220uK95xISPKkKzL2EC8M+ckU7v5OJpD0P2hC9qFIEvpgXpDycZgU7kNccNwRV7Lv9hSg86MCZPS4bpzzbR4I/5topOhQvZ8AfhWs/b4N5vWiBFTx287Y9NLN8vxAkgjuthoW/iTajPTAp2b1qhgI8I8GjPO/DbbdBVh03RvGJOFHM9bepWIG4p3YUt9EZSjugBsC6AQSsMtejcD9OE/I9sNmkvQyeLDzFwpS+ZLP6vltN0j61yAs9Bh4EPp8Fu723/eM8WbX5PN+Qpj1sKaq8PgCdvq1ldb8Ca9U+fBaJPk0RSb9bg9C+rkdhPzvoJD3GS8k9eVJxPWy+0746tPk9RfCqvxRroT3JRfY7Pt/KPZHBozwmukqx9jBIt+MFHbenOy43w6Wasq3vLTcwXnA1Ah8IOuaAKrHXo3A/In8MvYnJIbwPsAM9rOvdvqiTU79ux/s+78UTPYWeGL0DatC85l1QPR2Jirx4ApA8QVK+vOzOMb8FanW/KPYNPy9Cn71pN0zB9MNGv65HYT+bDJS8kx8HvcVMhT1DuQC/1ViEv1g/k78Za6E9SJF1vF09Or0VwaM8qQvFN1NQSLKpuj+31S0AM0WWqzenJKs3iwiGuqc0xjWic1W016NwP36smT2YDbm8Bfc/PhuRCT5x05K/JUyHv8Drjz1qoXI9krUHvhXBozzmjZY2WlkBuPwlgrbSjsC2bsY3N2x7qrYydVszDiuFuXLLyrhI4Xo/KjxPvSALNr0hjZg9pfMsvz7j9b3XxoC/zm+hPflofb1qEl69YMGjPAytGiqvB4u3QtUot1vJcTfUC22vpctxN57/5jFO5jw6WD4lsdejcD/qch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAlOZPPCEfjDwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAP2TgGbxIV2O9ZDl6PcDGEL9HMQg+3v6Ov9Rmoz0Ayoa8khClvZPBozwCTzQmRjZGt9/dG7cVWyw3g0UWr0VcLDfL+KMxqqcGOg7up7DXo3A/hfIMPQW9fj3YtGM8F/2gviofGj/UlIu9+HkiPWH5yzwhpI89mAPiPNCH/rrDULe9lGwbvWpbtL7gTri9bRePvZv/arsaHoO+9HTxPs3MTD8ThJc92UuyPVL3Jj2DT8S9UFkVPyf5qj0EKv86q72kPdlmiT0POp88Q/FAvDS5a7zVErk+05IbvttY/j5Ms9E80Ed/wM4MKUBvtzDAZmZmP+pyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADX79Y8UlNPPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/nKPnPYf5yj1qoO09Z/YKvo9+AT+O27a/EWuhPT3wED4A3vg9lMGjPKTznTfHF6s29B/WNyAW4LdQOy84RC6pt2Hx9bp5WZy6DPoOOdejcD/OfxQ9Atv0PUV1DD1Nttm9MePsPURJKj/fXxg9pNkWPRu8Cj4g4VI92riHulvu+z2IDoM7df//vc1Opz4aryo/GNlcPokcgb/wZBU9rkdhP7DDzT3QtjK8PQFaPMYzB78rJWg9sKS4v+bNoz3e4KY9E60SvOrBozxNquiwI3V4tshlL7eQDFg2QInPsFMmWDYLtKEzA8ooOXcIBK8fhWs/6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAPHuFD7DbeK9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD9L6R69ycbvvdGmfz3/pSi/hx8zv3WJjb+pi6M9oJWLvb8TCr4pwaM82YK1N7MdhbJ0Dzy3KJXVsj5TnTddHJ03/Xp1ugIxDTIw1fC116NwP1KkhjoyoHg9GormPe3I7r7N/7E+vt6Fv6DqkD2DzQy90RGcPeLAozxAlpY2WzgVuLTuAbfIH9m1OMY3Nw+KgLViOSMyas9IuM+fyriPwnU/G9tTPUFLwLy/LzQ+zoNivs1Ak7+R766/x+uPPSs1aj2zUp+9FcGjPOaNljZaWQG4/CWCttKOwLZuxjc3bHuqtjJ1WzMOK4W5csvKuEjhej/YWgI+VFCDPE3ZvjwVN5S+rR61PRQjuL9aQ6I9U+ESPkY2pjvhwaM8tCgMsPf4mLaxRji30gSFNh6lB7D8CIU2LE/RMtXXTzn2E0ivH4VrP5HqjT1wiI090XYqPXX9AL3ClJK+66dPP+Q4Hz1pAaU9gHidPeM+Yj3NX887iR7jPfhQMTvZFCK9rABzv4EAUz99FOo9VhJQv0GM+732KFw//gBgPfZLyDw9OjU+mBJOvo5rkz8AdrW/vOuPPfGiLT21JK89E8GjPDaOlrYNGgI4d51xtuBRuzZuxje3yz2ltiYEVbMRE4E5rcnKuEjhej+W98+7fTeOPJFuRD5l4yq/asCwPqSGoj5cPRY1G9fzvRn34T0VwaM85o2WNlpZAbj8JYK20o7Atm7GNzdse6q2MnVbMw4rhblyy8q4SOF6P900Az5BXXi9exfOPNRck77ou6I9YCq5v+bNoz2QFRc+GMWRvd3BozzgK4mwcBejtsayOrdh0Y02XYh9sD7ZjTYVk0QzgJddOaR3Y68fhWs/hbmrPVg9oz0ZeRY82WpRv8IchjviUq0+JQgZPYBHnT3Q/qc94cLQPJp/J7wCkNc9KQ/nPH8yT78tAoc+ev6vPkt31r10bso+vFxHvWZmZj9nZMm9ZWisvdHM7DxjEgo/19TTPqMLHj/NHxs9MLPIvSU5vb1CrAw98K4IPPGDVL1mh8s6aZMJPy3TjT/Dfx8/swEZvn3onL+0rQI/9ihcP8yGqT066807EQW+PNmZ2T3cm0q/W+vHPdCfFz0UtKA9c9b6u7pgIj0Vs785kkfgvYhwlbuECrw93uaKv4BrxT3lmJm8GpSuvkWKIb/2KFw/1wedvXlLA7wwTAU968cQP6e7V776qx4/1ccRPUzxjb0p6Jq84c4RPcNEDDxt3Yu98bgiPHiRDz8DEsS+b1IhP7YNl7w6j7+/IIQCvq5HYT829ac9iRuPvWuMCD6T+Ie9AfMiv3HNp78Va6E9rJeHPSuwE76ZwaM8qRerthFrmrd0R423dbItOE4V4LeJQay34licOnKL8zpr+A65j8J1P5CFjb0jcW4702paPC8CHb+lMw4/gfuFv4MopD1UrZK9AdNtvNywpTzx+7s8mQMsvHtSJb2+Wbu9tbA/P+oIKjw5zXc9kL7oPkVY3L8fhWs/mSryPd9xwT3WshU+xvv0vewwxz5ESLa/6RsmPY1lGT4NJgM+2cCjPNiXljY69xi4FsRCt6u7YbUOxjc3OtVBtLvO+DB4aBe3cpjKuNejcD9STuQ9cyvePSPFsj3RrGS+eX0eP3TiuL+ni6M9uWnPPZbVDD7rwKM88qkwM8Bb57ezgjy3PqzZN+wwnjaaHLg3ijpxudmkqTo6+Ka216NwP+pyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAD5EIe73bVxvArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA//6HyvIq5WLwZ3Dg8GQUxP2l8oL3kiLg+vawXPeLYBb16G7W8SljiPL4fEbnXyAC+QOI7PCOGMT+H9SK/s+q7PnUG27ylVYQ7lf2fvmZmZj9bgSg91d0FPT90wTtwU+M7EY1lPV/WfL0wI6Q9efDUPNdu6jz0waM8uzxVsFP2ObasSh+3qrQhNnFgQLCEwCE2u84VM4Kq/Dhe4pOuH4VrP4XZGDyXRJg9APbkPUT58r5FPDE/URmTvxhroT2jhFs8KtADPuLAozxAlpY2WzgVuLTuAbfIH9m1OMY3Nw+KgLViOSMyas9IuM+fyriPwnU/OvhuPa6Zxjw0i808Vv9vvs8mET9eWxA+vggcPSrfgT3aF6Y8rF8kPcbqUzu93ss94LKQO8eLdb76Q4k/cZgSPpFnnDymK8++hyL6Ps3MTD8rMcI9U0KMvV2mCj7utT2+L4wev+OttL8Sa6E9vmnLPbCYB77iwKM8QJaWNls4Fbi07gG3yB/ZtTjGNzcPioC1YjkjMmrPSLjPn8q4j8J1Pxs2KL2aYeY9yR8NPSa0Fz8sX3Y9dZU+P++SHz268gS9YhrAPYZKUD2yL8q8+/OHvb6zt7uh+hI/nCIhu5HDQD8w4ZI+K6Sbv8sfX72uR2E/ZrIDvUXczry4tyo9yX6rPzWf070inpe8Y/1RPEsfBb144xq9nk6hPPUssrtokBe8X/qEvbYKpj/KWPu+Rf1UPJhjfD50LcY+6Tc/wGZmZj95f6+9+osNvmx1WD1opj8/GtNqP37YTD+G4RM9HcfEvW5hHb6QYoU9oe3EvIMN87576uu8EUpIP937WT+gnFM/4SzIvsSzmT9z1RJA9ihcP+IWtr1KjrS8T6aQO3Ph9z4xvwQ/kSajOxeYDD0v06a9HGETvTRBoTxqb6e7/JkjvIi3ALzGkvs+DvEDPz7gZjzrdQ4/MYuHPYsRZD/2KFw/tqHcPPnZkDy1yik+S6YTvxb8sD5LeJi/NU3WNHJBLb2pshQ9RrujPKMNvLhNKa04ve0QOOGmYTj/WEK5CDwQOZN/+zsFm1E6i3NsOkjhej+TZvC7seJEu9Z+4TwLQL+9EBOSPluqpD70FxI9CC3xuwmR9Tul9Dg9BKeKvKHio7sxrUy8BvhFvlnEyj5zN5s+hWOZPvYNnMDq8B4/rkdhPynb9rzGZLQ9BL2oO1rrer2blJW+SC/hO3mEoz0s5cq+qcVAvq7BozwAAAAA2w/JP88yXz9N6nayLTXlNMAITKtFdB8uCGDZrcnqpraPwnU9g3y3PVW/Y71yz4w9kpG3vlZrgb4dXbq/JeOiPbuhij2ZUlC9YMGjPD8iFiqnB4u3RtUot07JcTedem2vmctxN8as5zFE5jw6Rj4lsdejcD9O77I9b8o7PcL9BD5BnTi+8MLRPoC8tb8la6E92l6ZPepRPT3iwKM8QJaWNls4Fbi07gG3yB/ZtTjGNzcPioC1YjkjMmrPSLjPn8q4j8J1P4WtpT0O1o29SaPwO2bLGzw2/n4+91jevlAXpT2L9IY9WyClvfHBozwPtb+wDRpMti3QJ7eoejE28buqsNCPMTbNF4Uz9qcKOTo1sq4fhWs/mQo+vaOFkjx4KBU9nY4cPxwY7T3MAmI/AvQUPYlnMr1CbqM8jy5YPXflBD2lSbu82W4jvYnUFj9zavw+p+NiP2b7QTwKi8u/NpJ/Pa5HYT++Cd683eatPXOdEj2Tq6m+NrLnvY3mD71VkiM9iy7KvElqtT3QaUc9mAssOpguvTxEJqc7bpeqvioUFryaEg+9/y8KPXaLRr5fIBi7hetRP+pyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACa4NM9oCSfPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/pj0BvmSxAb4bkA495fM+v8OgIz7/lIG/V9OjPYiKCr6xRAi+5sGjPBsicbDQoIi2NL5zt++cbTarQWGwm6ptNjTuLjPYojk5UaMfr2ZmZj/y4su8VZEYPf4wiTzLetg+39A4PlsNV7+KKiE9/Rd3vEAsYz2ZVf48xjnoOnFear5uG+M7NcIHP9U/nj5jB2S/YrlzvjUzlUBMeoe+hetRPzQDlryWxLs9bt1/PVIjF79Jlb89tDeRvytroT3BsEO9417MPYfBozyv2kUmtr9Xt1gdH7fTmjs3Q1AqrzucOzc2M7YxjpESOuv1xrDXo3A/YlC7PTq6CL1nkzE9c8BDvnv7DL/J1bk6+0U7PCAGuD0VfLK85gujPJRgtrrLabm7d3VnvJxOSr5SD0q++4lxOx/8iz0n9X4+cWkjvqRwPT8Gfrs8rPeUvXvM6T34g9++7DklvxnTm78Ya6E9cFCuPDvA4r3iwKM8QJaWNls4Fbi07gG3yB/ZtTjGNzcPioC1YjkjMmrPSLjPn8q4j8J1P+pyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAA9BgS+VdsMPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/1MNpvVudEDs5kYc7bnyQPx+hJz+os0I+85ARPe0bcr0CfHs7sTi1PLD+Gr2W+Yu8kMcEvVuUjT+ZCEc/JKMsPtfpiT/bKb6/+ZoqP2ZmZj/0SMM9c5eJvcEZKz6PEUa+DUUGv1BZq7+Mx5k9ICS4Pcv2/b3iwKM8QJaWNls4Fbi07gG3yB/ZtTjGNzcPioC1YjkjMmrPSLjPn8q4j8J1P3l9Eb5UDPg9mVVyPZJ4E7/Ja6E9iP5bv3/Uoz3jexK+zrD0PaTBozwMXfukK5cqt7uFi7d1VhQ3JkVDr1ZXFDe3pfwx18fnOafEeLBmZmY/QwBYvRaEo73wLkA8nFN8v9KHoz0pYLM+xncUPbBDNb1JdYu9SljXPK8Dxjxs1Fc+L0FqO8+Veb+GNuU+wMK2Ph55Jz7dhkM+nltuPmZmZj/z4pI8IXGQva4L5j3luN6+n/wNv5c1nb8Wa6E9raCwvOWB6L3iwKM8QJaWNls4Fbi07gG3yB/ZtTjGNzcPioC1YjkjMmrPSLjPn8q4j8J1Pzm9XL2mbvQ9pXw2Pauix76lYg+/R8aRv+LNoz0myHO9DnAEPsrBozwXyK+y4QzgtpJuRrfW8sI2d8guMoxnwjZXrKm0fguYORoCIrUfhWs/EctQPRzrubxinR09fCCKP5RoCb1RR7U9B8nqOkvJdT09ySy92kaWPBbsR7u+WJS9hdZfuwJYhT/aO8W8aVWYPXLgUD7jR0VAyR3ePmZmZj9Semi9dZAWvV0JfTzCRLe+yx1LP0QUQbzH8xk9xiJovb4DWb0HvQE9pzscOyp8mju0p6y8Nt+vvucIPj+xIGi8sXGYvXYl5b2koWs/rkdhPwku/L31NcQ9kljsOmqj3D6uXBa/9EAEO7q7xjohZZe9jsHZPQ0rojxr4JS63EGluijfK79O1ak/UXAevab5OLyx0w2/FFpAvxmHAUE9Clc/xp24PKfwJT035OY9K8G+vgTTzz5Y1Ju/IGuhPSf0i7tL+DA94sCjPECWljZbOBW4tO4Bt8gf2bU4xjc3D4qAtWI5IzJqz0i4z5/KuI/CdT/UkIE9fPEquzks9z3t8JW+v9/zPYwKsr8ua6E9oPRjPUTO/rviwKM8QJaWNls4Fbi07gG3yB/ZtTjGNzcPioC1YjkjMmrPSLjPn8q4j8J1P1tzS73kn529/NVwPLcWdj4jgi0/LFYDP5O2Gz3Fkkm9AdaKvU/ZAD3HPms9N9HYPAvYYL3tQnM+DNKcP7+EAz+xleq9zzjhvlyWJT9mZmY/aAH+O9RQZD3a+JA9xngbP/RaLz674T0/oS8ePQUrFjyx9ZU9of2wPUyHMz2a0oO9I6aluFd+Fj/sVWQ+x8k+P8aQtj2jxpi/3V79PPYoXD+i64m8RUW5PIB04z1CxQG/X9mfPaS1er9Ja6E9fI5AvZw8wDziwKM8QJaWNls4Fbi07gG3yB/ZtTjGNzcPioC1YjkjMmrPSLjPn8q4j8J1P0Fz5DxTgsm8XKAqPnsFCb/ydpy/flCTv77rjz1UGDy8K4AFvhXBozzmjZY2WlkBuPwlgrbSjsC2bsY3N2x7qrYydVszDiuFuXLLyrhI4Xo/EUO7PXvxg706IYU94HCQvmDvmb6qmry/p4ujPW6Zoj2dh3m9bsGjPFt0gbG6gH+3m50lt+w4XjeacASy4S1eN46wyzQznS06VnZgsdejcD+nO6I9V9rgu5XRQD7PPvw+bbufvWIykL+CdQI9t3v6PSgaQ70VwaM85o2WNlpZAbj8JYK20o7Atm7GNzdse6q2MnVbMw4rhblyy8q4SOF6P4Wg7zzbHsE8YZwqPtGHAL9urnI/hP2Yv7frjz2Gag69ABuOPZ67ozwx48i4aEIhODD8WratN9O1rPwfuacLEjlQ8Pg7oEn2OU460bhI4Xo/KbnePaSX2D3/dxw82Lalvm0UYr8diN8+PJoKPaY64T1Y+co9NUnfPK3aSTzh4OM9HEkJPCaI3r5Sgcu/ksTlPl9cFkD3WcrArj6Sv65HYT97Vdw9Nfz7PS+dmTuYeCo+vvGvvpn1XD0hJ6M9QTbPPT8eDj72waM8Yd2hsKEJL7YZJWC3xTQYNvY1kbCZRhg283ViM6bS7TjnD4OuZmZmP+gNQT2W37U9T7LqO1ylh7zjVJu9YB2evg0YpD2QhOY8VqTQPe7BozzUgMaxH8lgtlJFKbcId0M28L2tsbnNQzaypYc0KLUYORa22K4fhWs/Gd0BPov2lL090Kk8LjyJvomXBz+4Dby/4M2jPX1vCz4kNKG94MGjPAQUwzSee8C2KYE6t+7gi7bSy9q16JB4NqS8LjkCtmW5PyEJuB+Faz/h6Ze89bWZPRxFFD7fET2/iWE1P2LMbr8Ya6E9YxvdvduFEz7PwaM8aiWRtov1UzdFzyM39TCHttLqPLaiSEa0pWu6r7HlGjf6GA45j8J1P938AL4s5Sw7vRTkOyzBjT81fo6+kh44Pu66ED3shfu9a9pzO8z8ojyOFtE8wcd3vaXIRTeLEos/TSrUvnDfMz7bUQo+sOEDwO0x3L32KFw/zWAkPHBVPD3qmrQ8u7dZv0IoKLxVolK/xZQXPVKpyznUazo9L8IXPcpnAzzkk629T3RGO55UVL8vjVY97sNSv7C+DL95d54/fOjZvc3MTD+5RuQ86+jwvChqgj1nZAY+5ypJPpMwSD9GSQo9t+HyPPdNKb3C16g9HnlmPPvwVT1IMIu5J/L2PRLa/D4xUUk/ecdJvcMnc797P3E+9ihcP+E5hTzlkuq9XsGAPcBAJD/Tohs/ARBIP/vgGD3Btqo83wUHvtQkpz2zWIW8q6k/vUnRh7ws/iM/SwgzPwXbST/uG0q+r1RQv3hiTD/2KFw/6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAABGqpb0WTJ29CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD/9M5G9HShuPdE30jyQpd8+Gtwlvx6zHT9/Yhs9CMWZvU+WjD2w3ww9hNmXu7LJ0joqO5U8aiDjPvceYL8BNR0/au60PfmOWb9F+He/rkdhPzPOLj2Sf+U7cNsvPohgdL4Ka5A9IiCgv+brjz2IqTw83BqzORXBozzmjZY2WlkBuPwlgrbSjsC2bsY3N2x7qrYydVszDiuFuXLLyrhI4Xo/vu2APUyGbz15GnI9ru7DvnP0Ar14JLS/eMqhPTOuJj327Hc9h8GjPN6KEKU6wFe3uhsft0abOzeySCqvrpw7N/0mtjHokRI63/bGsNejcD91zbM8hzzDPFK4KT5kmIO/wwGUP4zRmb+56489r0SYvXL2wz0VwaM85o2WNlpZAbj8JYK20o7Atm7GNzdse6q2MnVbMw4rhblyy8q4SOF6P/Hx8T31u9K9fQEYPmeBEr7iTt2+VhC4vxE4oD2QAfM9B4QPvtnAozzYl5Y2OvcYuBbEQrequ2G1DsY3NzvVQbQuzfgwd2gXt3KYyrjXo3A/6FQBPkuMIb0WfoY7OuJoPScMPj9jPiM8YFwcPbszCz7iZ0e9q7mzPAKYMjyqcY267bbKvIeATD28KXM+lbVzO4ikiT7ph0w8sfZLPmZmZj89W4u9PoBxu7sc9jyBldi+j1gMv4Taab8sbaQ9R8+OvckQajyHvKM8YmBUOt+Fd7q1mZk9rpN6vZk9Yr8G7ec470ZJPhCBKr6JFoFAH4VrP7oCDL7V1NS9fZCtPY3CCr/u8fI8wRZUv96Qoz301Ba+i1TbvRbBozwd2VcwB3HEt8e6m7epGas3P5mAMzqaqjdJe0m2Cq2FOjbopbFmZmY/v/eSPb+olb5EGIE8wsmqvsABkL7xoGS+laZ3PSFr3D6I3ZQ+v5DCvrEQyb8yJrQ3J9LXv5UiBjhR9QG4oy1hNgJ95Td2T2y5PsqDOq5H4T7Pns48NHv4PVLZBj5GsRs/cYguvY8UYD8oDiQ9xTDsPHIrAz4rtBk+zeS7uyTnBDyPdu47zrUaP7VaAL/x2GA/hvtjPiMeAL8uAKi+FK5HPwEmIr1Dc2I8s5QXPuPvH78DmYk/TeC0vbDO4jNWHQK+12dePeLAozxAlpY2WzgVuLTuAbfIH9m1OMY3Nw+KgLViOSMyas9IuM+fyriPwnU/zJTPPcwQZD2ytFE+/+8OPlRNTD9xGI2/wOuPPSyIBz5V1Q0+mcGjPBFrmjepF6s2qEeNN04V4Ld1si04iUGst3KL87riWJy6a/gOOY/CdT/Wsg0+Drn1vdc72jxZSrK+EDKGPe5Iwb+I0qM97N0UPvpcAb7awaM8DKoNsm73s7Zhi323SeRVNiXRizRZ8J82vYaqtc8DIjkoagu3ZmZmP+pyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAD3FgC+nrvgvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAANKhRrtM+L69CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD9Y4pO91h2LPJgRHT13nAA/c5sUPypAcj/HKhY9HQGSvdQbETz2kGI9u+cxPUXu4ry9ZUm9nSb2PkMliz/uN3I/LQdaPfcF3r+XQ+g+rkdhPyr5Zb217d89CpjvPbn3HL/VUc8+cohBv6qLoz2VNOW9JGUTPtnAozzYl5Y2OvcYuBbEQreru2G1DsY3NzrVQbRd0PgweGgXt3KYyrjXo3A/m1hiPXLlLz0lYCc9XKSwPhcHlD1LfmI/WxEPPXdJez2OdT09t1puPcS2Nrxumbs9pw1uPCmtpj5q4RY/4RVkP6gibz1iDpm/x1uOPK5HYT/EsM28nxwxPba8BT7oiRG/DWk7P67r6L7rNZo9z/QJvlJkrD0OwKM8NhaXN9KsSDhbEpQ4HLVDNyE9Ibgj8KA31oSxOZz7qbr7Ums6j8J1P4Du5DwzWec9swmqO1CGS7wwace8DbIdvnJjoz2E5fU8gsLwPQHCozyvXi2zftHGtWsXtbdQl601ccA4swkwsTW6VRA2Np6HOGeoBC8fhWs/sPwTvlfY5r37tpg82UyFPhckkT6/Ui4/YDcZPe79Fb7sBgG+UgIMPRdaP7xXmK88qvisvPKnjD4BcAU+AT4uPxriMr8p9sg+oyi8Pq5HYT+6sc09/1/FvficvT03sJm+CsHKvqmUsr+oi6M9hTKyPRZH473iv6M8j0mJOAA4GzeOF1C3KrSpt8YFe7biU8a1VuOaOE/tuTIkg/u416NwP90yBj0Y2AM7eMwrPhZCwL6YBm08nsqav3qqFD31x108vnnPvBXBozzmjZY2WlkBuPwlgrbSjsC2bsY3N2x7qrYydVszDiuFuXLLyrhI4Xo/ZYdAPZ7adD3DhtA7kaCSug0chjwG20C+iZmjPQj9/zz3TKE99MGjPA3L/7EDCze2etIht+gmHzaDu+CxgKYfNkN7sDTgrPg4eaZYsB+Faz81FiU93mv8vC7HZj1cH+6+tOp4vU86rL/1aqE9umCBPFE8BL2TwaM8v2wFJUk2Rrfe3Ru3F1ssN7tFFq9HXCw3IfmjMaynBjoT7qew16NwP1a+w717uoM97HqDPSF0aj54eio/9NA/Py6iIz1eer69ZK+NPQneoD2s8aA7ZQkXvd03J7uTdl0+idGZP1q1QD8j+a49Q6uHv5sOJj/2KFw/JpmgPbkTT7snbkA+g+zTPgUI87w0cZC/tOuPPTbJ6T19RSq9FcGjPOaNljZaWQG4/CWCttKOwLZuxjc3bHuqtjJ1WzMOK4W5csvKuEjhej8fFtU9Y2rrOmwDSz4OuCQ+R8usPVlkmb/b+ws8UO/8PXsRj7ziwKM8QJaWNls4Fbi07gG3yB/ZtTjGNzcPioC1YjkjMmrPSLjPn8q4j8J1P7aK4r3RbkC8rjypPVe9tL8vAOw9r0Z4v0iuoT3jOQu+MSSfvCvBozxumMYusXO0t0Jjc7eM8Zw30cDgMZfknDd9QrO0GDt1Oj9Ki7EfhWs/y4JHPde7Wb2p1Vw89I5rPiztDr+LYNk+ga0ZPd9qYD37AIW9m0L7PK2XX72NMfC78nEMPG58YT6QRYO/rQjhPhRLIz/nRwC/NdPsvmZmZj9rxr87fsZ0vcB7/j2BtrO+MGRGvqFWi78aa6E9DyQCvQXBpr3iwKM8QJaWNls4Fbi07gG3yB/ZtTjGNzcPioC1YjkjMmrPSLjPn8q4j8J1P2/ytD3SLD49QT0RPlUNB747Yx0+CdGIv/jLnj0Se4o9BflCPeLAozxAlpY2WzgVuLTuAbfIH9m1OMY3Nw+KgLViOSMyas9IuM+fyriPwnU/x9wJPffhBr0hXew9BV6Svl6iYr5+RJ6/jeuPPb2Fmjrb0cG84sCjPECWljZbOBW4tO4Bt8gf2bU4xjc3D4qAtWI5IzJqz0i4z5/KuI/CdT9JgYA9RnCSPfQl/z2cVwa+7dIRPwFYor+5sps95XekPT0aFz4gwKM86FBvOKZrUTfUTv62Us05uEArpbf8wbE2j8lkOvjMnbr8ev64j8J1PzMKuLwe5pM9tkryPRhOD79W5j8/bHxKvxdroT0SQqC9k/nuPeLAozxAlpY2WzgVuLTuAbfIH9m1OMY3Nw+KgLViOSMyas9IuM+fyriPwnU/kw8UPafdxTymEi0+AeS1vgNTij8wUaC/Ys2CPJiYq7sYk7o9FcGjPOaNljZaWQG4/CWCttKOwLZuxjc3bHuqtjJ1WzMOK4W5csvKuEjhej/tZm09zIjovbx/+DxQQ4Y9nqAjPkrQQz+kVRw99Dh/PTHb/L1Whj891Tp4PK2Hvz3e7g0711I6Pc0zIj+TdUY/HUomvkTZnb9mIXs9rkdhPy7O5LvZ8d+8Za08PO04lL5xxWw/tzRyv9nPoz1dyxi8rRw5vXNiozw1UIU7dHsUu9i037wq/KW8vGVnP1MDAju4UTG+JezSPdZeiD4fhWs/I4bqPTW7fjoMub472NmJvjwHlz+ror27DWUMPTdC8z2ZayG5wpiyPExr+rsTBPM8jd+YPKkRkL6wGEk/Bsshu/5L3D6OYpG+eMCwPmZmZj8WlAg+ql9uvZJKyD2N+Ty+ioVbvmI7t7/maqE9yucMPowohL3XwKM8KpiWNvmrGbhGzIG3BW06terFNzdvKBKzDefVL2dX5LXll8q4H4VrP06N9jxBku89ayo3PYOZJj/i2mU9uBxsP47LFz0ocsc8cNDNPQ/lfz2fyhq9GlGsvezFNrziTCA/1Vd2vK28aD9FxEg+uwW4v+pnyLyuR2E/+gQZvrKvUj0PHnw9tJbzvqSsPD++ahQ/fI4TPR/cKb5k3kY95FaYPdzEhrwpETK+XhEOvMds9r7Fhoo/6l0RP+R+pz0AHVy/S49UP/YoXD88WIw9BA+QvermAD6cdse+VIstv7JDsr8Wa6E9NRNXPbmQBb7iwKM8QJaWNls4Fbi07gG3yB/ZtTjGNzcPioC1YjkjMmrPSLjPn8q4j8J1P4436Tu5HAK9GK+LPN+66j7kXBe/JpgOP2jpBz1tbQs8qQ7VvN4jDT3/Q9K8cT7HPGHNyrzWNwE/cA40vzkSDT9n/Yu/1w8MQFGWBr+uR2E/+pLavXqCFj54Jt893BaIv8Z6bD4N6Yu/rYujPZlK/71e+RA+18CjPCqYljb5qxm4RsyBtwVtOrXqxTc3bygSsyfn1S9nV+S15ZfKuB+Faz8W1My9kzyHvbnR4zziPky/ueVZvdBrg79BqKM9Wwn9vf5Nfb3jwaM8dfswsEp1kLb/+DW38jp7NkOpJrA0RXs2XQcBM1JGRDk8cDKvH4VrP+rqCL7VhbO99C64OywYAL5nl4a+ccL3vNzVoz1XrAO+Xb2avf/BozyME4qwme/itYiXQrfOVcU1bRF1sAV0xTVARz8zHiuaOMJY3K1mZmY/6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAC59V72w+bc9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD/qch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAOoHcvTSB8j0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAP9A8Mz1hORO8vc4gPvMriT5MxP69C9gAP4PqHT2o2wY9d5zmvFEqKj4Y+vW7Ij1VvGoWADxvV4Y+eXBOvhEI/z4nSDU7s2nxvrTa97zNzEw/bprfPeZgtryqJVY86j1cvpqeuj7KZ94+aRgOPeU79D2qiI28WhXqPP7AVTsnYQE+++8tOyZcXb5IpKU+MQfePjI+GD13AMU9UmFZPq5HYT9aa768zDgJvb8pnjwAer0+ZSIpP0z2CD+hsxY9X4KbvHpUNL3RgAQ9vIwKuzIExTzkdgs7QXa9PnIIfz+Dlgk/Vrl1OV4vG793eR0/rkdhPyhbor3PgQO9v172PCwTFj8YcB0/gp5MP3fGHT3JtqK941csvS8iPD2CG3c8EsduvZnymLqH9hE/PfKdP/PkTD8XqH+9ZoXKvxExPT+uR2E/chnrvY5A5jzIfBs9BVbOP8OIWT4Ltbs905eRPC8exr0tg6Q8vrSXPInkqDwhsKq9NlGJPR4m0T8Bog8/0XNuPQu6cECDDDu/KAXOPq5HYT9q4I49KpyQPHSJuDwBv4y+tAthP8P06j0aLBw9fVqMPbJ4FT1b2Bo9UhHWOxg8nT034KQ7dg2XvvcOhD8s1eo96akXPeEUR77cBhw/rkdhP+pyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACRjJA9ZY31PQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAICk6j0ZFeO9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8eKPq9ZTe6vYHcxTs2iHi9VXIFvlC+GL150KM9W/MAvt49tr35waM8+2SCNejyrTUROt44mEWXta69YjXFUgQ2MCQxuL1cbLhpa0QuZmZmP//IZz280Ue8ACVuPWVB3r4PkI08rPyuvy8Toz3A3+c8m99avJPBozz+eoWyN7lGty0UHLd4xis3b9vKMv5bKzdL8Z8zvNoFOr+M8LXXo3A/wmmAPU54kj2UG/Q9/n60va5xDz/yhLC/N3CgPYKhhT1Rxs094sCjPECWljZbOBW4tO4Bt8gf2bU4xjc3D4qAtWI5IzJqz0i4z5/KuI/CdT/aYYw9kZ3lvel6jT1Z0Z2+QD8lv3Lzr7+ti6M9ArCAPUEqDb7owKM82MjxN3OxwzQXvDC3lL3bNVZthTdAeMc3pLdNusAZLzmP1gi416NwP/0hCD2LwLy8TK/tPVCWrr4ouwK9a+Gavw1Ynz0nxW27071RveLAozxAlpY2WzgVuLTuAbfIH9m1OMY3Nw+KgLViOSMyas9IuM+fyriPwnU/sZK7vHZCnb0A2gE+J6gqvyJ6N7+U61q/GGuhPdl4sb3sSwS+YMCjPBinOLjqhgA3gOw5OJ9U0zdFHSa2h9iuNx8RqjpEn4U5fOQTOo/CdT/qch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAOLZEvVO7Er4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAP+pyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACG6gi+IoTJvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/b8CBPMwvWr1Mqio9IpRQPzrzzz4tYNU9z9odPYOMpjz2j5a9oO2ePDbkX7wFrPw7Wq7vPelMWT9PDRM/7J7SPKbDlj5IFC6/3Uomvh+Faz8GMmQ8iKRUvGbL1zsc3fE63j9bvHDxNr40dqM9brQePNEwCbzvwaM8+hKoNTJ8AzafMbQ4ua7ktcUhkjUyaTs2tlRkuHaosrhiPbkuH4VrPysnvD0TmYY9GVMMPv1Ihr1qMwU/wPSpvxdroT3FtL49ELGwPeLAozxAlpY2WzgVuLTuAbfIH9m1OMY3Nw+KgLViOSMyas9IuM+fyriPwnU/I/u6vYLfW70PjqA8fY9Ev7k8jj6vAYm/iqqjPbwAy710oG298MGjPLCXtrDyb1O26dAnt5nbNza9+KKwye83NpsDfjO0ow85/zu/rh+Faz8ObWm9wUGrvaletz0JY2K/lb/9vukHhb8q+p89G4oIvkZfvr2UwaM8pPOdN8cXqzb0H9Y3IBbgt1A7LzhELqm3YfH1unlZnLoM+g4516NwP8IhuT1AIY295ggRPoto9L1QrSC/Z36lvxVroT0u+dg9vMgYvuLAozxAlpY2WzgVuLTuAbfIH9m1OMY3Nw+KgLViOSMyas9IuM+fyriPwnU/gMOXvKncNr3kSQA97VvkvnDPeT4bz/Y+iegUPfX8krx5lE+9vlhGPUhspDz4Jgw+iipAu36WBL/qsII/szMGPy8ULL761pbAZ7MnP65HYT+97A6+jJ6pPQ83oD0Vli+/VqGsPNxAW7/ai6M9d5YKvtrGrz1OwaM8HjeoKzTzmLcU3pa3XP+EN7Y2oK+TAIU3kPwlMjTQTzrq/EexZmZmP+8lkLwDQJc9JkvlPfyDGr/1qTQ/XnV+vxhroT20yFK91pzsPeLAozxAlpY2WzgVuLTuAbfIH9m1OMY3Nw+KgLViOSMyas9IuM+fyriPwnU/3vDSPRQzg7ymSJg8AKrWvlD2DT/gqaG/8cCjPZnLyD2xZIa85MGjPJEI4jDjlo02vNQqt9A9drbmHsow6lZ2NhZEnbONYEC5KCgnrx+Faz/uTAc+rl3WPbU5Dzy42Qe9N+Q1PQRkXL9gFqQ9YEP0PQwl1j3rwaM8jeyAsNA6b7Yo9G63YgZQNv9ybbDWFFA2mrM4MyyFIjnPu/SuZmZmPzflMD1epb47VzMwPqeMbr5OzGA9nKifv6LoOjxjeFA7iQEdPRXBozzmjZY2WlkBuPwlgrbSjsC2bsY3N2x7qrYydVszDiuFuXLLyrhI4Xo/FgIAPsO3Fb28A348tHSdvs1xPj4Q/rq/7c2jPS7vAD4Gmle96cGjPLjJP7F6EYC29Ukxt/S5XjY6fymxJuReNlkwBDR9AS45oWgMrx+Faz/odIy9ixJfvP5mqj1+Nec+3bqiPtD5Kz/YABE9R4CWvQ1upryf6Ms9wsbBPGJGWj04hgS8rRTiPgVPtb32aio/J1AvvJ9b2r5AJoA99ihcP473hz2EQMy93kgWPDKRa7/wPG+97R6aPmv/GT3DtIA96IjhvfIk1zwWu4i8FaefPZrizjsL63C/9TsFvyxDkT5bZHg+Eu6/v6+cEL9mZmY/rNvAPUjwxLnm4YM9uI1qvm/20r4gxLm/qoujPZMouj21UPs79cCjPLeh3jdDlwKwV+srt8+9ZjB/mcE3FJjBNwBBl7o6yNYyi/88stejcD+2FsE9NESRPWClDj4IZaO99zYPP56zrb8Ua6E9l5fyPTw9BT7iwKM8QJaWNls4Fbi07gG3yB/ZtTjGNzcQioC1/zgjMmrPSLjPn8q4j8J1P5V5vTwK+0I8/ROyPH6vYD69wEO+mRuEvr5/GD22h+o8bZAjPP5jBz2PbKy6kRcpvXEqlDuIKWA+oGtpvw0LhL5Yrpk6rm0QPQwl9zz2KFw/3yVUvdOlq7yq0E09Z4YTv+37Pr8dRQw/O7sZPbygQL2wTQa9iC+GPcqHOzzzySU+roBpuyP6Hr9JNX2/S2YRP+KaH79HARPAZd6lvfYoXD9H5jw9iF3LuddEcDyxFNM+jQKEP6tI2j63ghE9yeA3PYrvOjya7/88TJDlvMCFrr151RS997PNPizzuj/4UNo++vOYPov5q777NnU/ZmZmP+kfZz20Xb48ggI2PvalJr6VKUw/XtKzv37wiD10YOU8OztTPRXBozzmjZY2WlkBuPwlgrbSjsC2bsY3N2x7qrYydVszDiuFuXLLyrhI4Xo/lGgOTQABSxSGlGgSdJRSlHUu", "achieved_goal": "[[-4.68348116e-02 7.57719204e-02 1.34132266e-01]\n [ 1.44895360e-01 -4.78477590e-02 1.99894346e-02]\n [ 8.47474039e-02 5.74957132e-02 8.13596547e-02]\n [ 1.05590872e-01 2.53848042e-02 1.99899059e-02]\n [-1.46166952e-02 8.18426386e-02 3.77879441e-02]\n [-1.21529199e-01 -7.34106526e-02 3.36625166e-02]\n [-3.91696434e-04 6.99048191e-02 1.99892763e-02]\n [-1.43230215e-01 -7.55994394e-02 1.99999996e-02]\n [ 1.11348577e-01 -1.40075728e-01 1.99895296e-02]\n [-1.49210289e-01 1.22441471e-01 1.99898705e-02]\n [ 3.46656181e-02 6.02306649e-02 1.97953023e-02]\n [ 1.21581092e-01 1.46467462e-01 1.99897755e-02]\n [-8.25589988e-03 -4.43875268e-02 1.23896301e-01]\n [-3.50491136e-01 3.80488396e-01 -3.80010992e-01]\n [-6.58212379e-02 6.69784322e-02 3.24669853e-02]\n [-8.89470205e-02 6.86780829e-03 2.67649200e-02]\n [-8.64711218e-03 1.26202106e-01 1.99899375e-02]\n [ 1.33712322e-01 7.44225755e-02 1.99999996e-02]\n [-9.22289938e-02 -1.34709328e-01 4.77475859e-02]\n [-1.44394308e-01 -1.10027902e-01 1.99894179e-02]\n [-5.97809404e-02 -9.93841141e-02 1.99895296e-02]\n [ 1.30968958e-01 1.39011189e-01 1.99895296e-02]\n [-9.71992016e-02 6.84241578e-02 3.04942131e-02]\n [ 9.11066309e-03 -9.84279439e-02 2.05262750e-02]\n [-1.20511845e-01 9.78124738e-02 1.99899245e-02]\n [ 2.95251533e-02 7.72541389e-02 1.99896954e-02]\n [-8.94422308e-02 1.08364873e-01 1.99999996e-02]\n [ 6.43891692e-02 4.14298922e-02 1.99896395e-02]\n [-5.26572615e-02 1.19641842e-02 2.40837317e-02]\n [-1.22915879e-01 -1.04590051e-01 1.99894346e-02]\n [ 5.87460306e-03 9.36337411e-02 1.99999996e-02]\n [-1.00065112e-01 -1.53737916e-02 5.39171621e-02]\n [-8.52301866e-02 -1.06860995e-01 1.99897420e-02]\n [-4.08203416e-02 -8.60008299e-02 7.28816465e-02]\n [-1.24460962e-02 -4.81944494e-02 1.85767878e-02]\n [ 8.13050419e-02 -4.82658520e-02 1.99896693e-02]\n [-9.37402621e-02 1.16248854e-01 1.99899375e-02]\n [ 7.09161256e-03 7.67610669e-02 9.65342447e-02]\n [-5.71757322e-03 -7.10023381e-03 2.60607023e-02]\n [ 8.85290727e-02 5.09538315e-02 1.97291132e-02]\n [-5.05377091e-02 5.21718748e-02 2.80093290e-02]\n [ 9.47734788e-02 -5.71049191e-02 2.54585631e-02]\n [ 9.61292088e-02 -1.49036467e-01 1.99999996e-02]\n [-1.12366438e-01 -6.72982186e-02 2.10831240e-02]\n [ 1.24649055e-01 6.64797351e-02 5.06997369e-02]\n [ 2.22424930e-03 -7.46158361e-02 1.99895296e-02]\n [ 1.40029505e-01 1.12102054e-01 1.99999996e-02]\n [ 1.84357874e-02 2.58160084e-02 5.46384156e-02]\n [-4.96200249e-02 -1.22460485e-01 7.91741237e-02]\n [-6.62721619e-02 2.53746249e-02 1.99999996e-02]\n [-1.06902562e-01 1.08435228e-02 1.99896693e-02]\n [-1.37042969e-01 3.66279520e-02 4.78609465e-02]\n [-1.40013933e-01 -4.62668352e-02 1.99894141e-02]\n [-4.98109460e-02 -6.75836802e-02 2.68542804e-02]\n [-1.10577531e-01 -1.01315081e-01 1.99999996e-02]\n [-8.64190459e-02 1.18786238e-01 1.99899282e-02]\n [-6.26859441e-02 -8.55708569e-02 6.52297437e-02]\n [-1.15595192e-01 -7.39290342e-02 1.99869238e-02]\n [-1.02324579e-02 2.72613000e-02 1.21004708e-01]\n [ 7.98979700e-02 2.73709483e-02 4.87964116e-02]\n [ 1.16231546e-01 9.86909196e-02 1.99895352e-02]\n [ 1.29896879e-01 -9.79162678e-02 1.99895296e-02]\n [-9.64573547e-02 1.43862413e-02 1.99894179e-02]\n [ 6.87192660e-03 -4.46089637e-03 1.99894346e-02]\n [-4.14570831e-02 -5.62366508e-02 3.29769328e-02]\n [ 1.18233070e-01 -8.65109079e-03 1.99897978e-02]\n [ 3.52152213e-02 1.07596762e-01 1.99894346e-02]\n [ 8.18374529e-02 1.50033524e-02 1.94123629e-02]\n [-9.84222442e-02 -1.08775822e-02 1.99896954e-02]\n [-1.62150878e-02 1.42489567e-01 1.99894346e-02]\n [ 6.06072228e-03 -1.05701625e-01 1.99897382e-02]\n [-7.94655457e-02 1.70380095e-04 1.99999996e-02]\n [ 1.28735736e-01 -9.97775272e-02 1.99895725e-02]\n [ 3.49351056e-02 5.52023761e-02 5.94813861e-02]\n [-2.45174230e-03 -2.34493446e-02 1.99895296e-02]\n [-7.81659260e-02 7.35350400e-02 1.96103510e-02]\n [ 6.39895648e-02 -9.57233161e-02 4.84331474e-02]\n [ 9.20946598e-02 -8.48895609e-02 4.90805544e-02]\n [-1.21715575e-01 -5.01127057e-02 1.41180843e-01]\n [-8.20482224e-02 -1.40526384e-01 1.99898127e-02]\n [ 6.32186010e-02 2.68908869e-02 1.99898556e-02]\n [ 7.86488205e-02 8.27486515e-02 1.99895296e-02]\n [-6.96735680e-02 -1.05726257e-01 1.99895296e-02]\n [ 5.23324981e-02 -4.92703095e-02 2.01486163e-02]\n [-3.53642069e-02 -1.29221559e-01 2.00307816e-02]\n [-1.06035590e-01 7.96661712e-03 1.99895557e-02]\n [ 1.29020780e-01 -9.13193151e-02 2.78309416e-02]\n [ 7.51564326e-03 9.90586132e-02 1.99897606e-02]\n [-3.72605510e-02 -2.54411753e-02 5.08707985e-02]\n [-1.49882510e-02 -4.54686768e-02 1.99895296e-02]\n [ 5.92359677e-02 -1.32528573e-01 1.99895296e-02]\n [-6.18676879e-02 -5.42167798e-02 1.99896693e-02]\n [ 1.26892515e-02 1.71046872e-02 1.99999996e-02]\n [-1.64537430e-02 -8.05980116e-02 1.99897643e-02]\n [ 2.48991866e-02 7.01372698e-02 2.75896043e-02]\n [ 8.04398879e-02 6.70906976e-02 1.94368642e-02]\n [ 2.62374114e-02 5.06165698e-02 1.99999996e-02]\n [ 1.41541436e-01 1.21517181e-01 1.99897662e-02]\n [ 3.68286520e-02 1.35483190e-01 5.14842272e-02]\n [ 8.14835876e-02 -8.95239692e-03 1.99899264e-02]\n [ 1.45442739e-01 -1.10560916e-01 1.99999996e-02]\n [-6.81564808e-02 -1.34840950e-01 1.99895669e-02]\n [-3.43756787e-02 7.62058571e-02 1.99894346e-02]\n [ 5.71796112e-02 -7.77944550e-02 1.99895296e-02]\n [ 1.43437669e-01 5.07238787e-03 1.99899096e-02]\n [ 8.05690959e-02 7.68899918e-02 5.52357547e-02]\n [ 4.23917212e-02 8.55192319e-02 1.99895259e-02]\n [-1.19062625e-01 1.10334583e-01 1.99895296e-02]\n [ 1.47543192e-01 -7.11767077e-02 1.99899022e-02]\n [ 7.67965317e-02 8.20289850e-02 2.54835505e-02]\n [-9.79980230e-02 -9.23941508e-02 3.43439654e-02]\n [ 7.84684718e-02 -7.65495887e-03 3.96430269e-02]\n [-6.93078935e-02 -1.89095307e-02 3.55976857e-02]\n [ 6.62072599e-02 -1.44226715e-01 1.99897755e-02]\n [-7.16196597e-02 -1.45156393e-02 2.02259347e-02]\n [ 1.49801448e-01 1.28074840e-01 1.99894179e-02]\n [ 1.01275869e-01 1.37533516e-01 1.99894514e-02]\n [-4.12189635e-03 -1.47528322e-02 1.99999996e-02]\n [-3.26775387e-02 -2.21078284e-02 2.76299901e-02]\n [ 2.59935725e-02 2.86173057e-02 1.99899450e-02]\n [ 1.33983223e-02 1.28723770e-01 1.99894346e-02]\n [ 6.34139329e-02 2.02750452e-02 4.01303023e-02]\n [ 9.93227810e-02 -1.32418394e-01 1.99894346e-02]\n [-3.24580446e-02 9.38003212e-02 5.08523211e-02]\n [-3.25005464e-02 -3.78145874e-02 1.96908079e-02]\n [-9.60829034e-02 -1.53691977e-01 6.51293993e-02]\n [-8.14574882e-02 -3.59812826e-02 1.96844116e-02]\n [-4.22987416e-02 3.63031961e-02 1.99867599e-02]\n [-7.36010447e-03 7.49409618e-03 4.51551862e-02]\n [-3.96279693e-01 -1.88254014e-01 1.99898146e-02]\n [ 6.76912889e-02 -5.08600213e-02 1.99896693e-02]\n [ 7.48879462e-02 4.62206975e-02 1.99894346e-02]\n [ 6.58961162e-02 -8.06281194e-02 1.99899394e-02]\n [-4.35557701e-02 1.99500360e-02 5.27787767e-02]\n [-2.46803965e-02 8.85816291e-02 4.86848950e-02]\n [ 1.03455737e-01 7.77065754e-02 1.99999996e-02]\n [-1.35294080e-01 -1.33074537e-01 1.99899189e-02]\n [-1.50814028e-02 5.54621220e-02 3.10466755e-02]\n [-4.77759875e-02 9.97903571e-02 1.99897420e-02]\n [ 8.98554325e-02 -2.17876825e-02 1.99031346e-02]\n [ 2.12785900e-02 -1.10718213e-01 1.99894346e-02]\n [-1.28930047e-01 3.43888588e-02 1.99999996e-02]\n [-5.91086634e-02 3.83734750e-03 2.21217591e-02]\n [ 8.99126530e-02 -1.24005876e-01 1.99894346e-02]\n [-1.43050715e-01 1.19477853e-01 1.99897960e-02]\n [-4.42540050e-02 -6.80947974e-02 2.62872167e-02]\n [-2.15609912e-02 -1.13529004e-01 1.99894346e-02]\n [-5.95170483e-02 1.29333705e-01 1.99898668e-02]\n [ 6.00064211e-02 -4.21841033e-02 1.83443315e-02]\n [-5.66737875e-02 -5.29820845e-02 3.16744111e-02]\n [-7.39233568e-02 1.06326208e-01 1.97959188e-02]\n [-4.27104859e-03 4.32055406e-02 1.99894346e-02]\n [ 5.56532145e-02 -7.77605362e-03 1.99894346e-02]\n [-4.92122360e-02 -6.77909926e-02 3.14572416e-02]\n [ 9.16553009e-03 7.32225254e-02 8.64212587e-02]\n [-4.70108837e-02 2.34664008e-02 1.99894346e-02]\n [-1.14804097e-02 -1.30371734e-01 1.99895296e-02]\n [ 7.93942064e-02 -6.09203465e-02 1.99896954e-02]\n [ 1.22306280e-01 -4.76323664e-02 1.99895296e-02]\n [-3.47695574e-02 6.93874359e-02 1.99869238e-02]\n [ 1.09975144e-01 9.91083980e-02 2.72565875e-02]\n [ 1.01177700e-01 1.38787255e-01 1.99899487e-02]\n [ 2.81393826e-02 1.01875946e-01 1.99899338e-02]\n [ 1.36167482e-01 -7.87127316e-02 1.99899077e-02]\n [-1.07962392e-01 1.44065306e-01 1.99898761e-02]\n [-1.22814029e-01 3.72090447e-03 1.98959336e-02]\n [ 3.88453307e-04 4.55129892e-02 3.70504223e-02]\n [ 2.96486448e-02 -4.13341187e-02 8.24427754e-02]\n [ 2.08390970e-02 -1.31858334e-01 8.16132128e-02]\n [-8.08907822e-02 -7.68052787e-02 1.99999996e-02]\n [-7.50828385e-02 6.86460659e-02 3.43930125e-02]\n [ 1.15150288e-02 3.41615523e-04 1.99895296e-02]\n [ 4.06934731e-02 6.05287179e-02 1.99897420e-02]\n [-7.43497536e-02 9.56849009e-02 1.99895296e-02]\n [ 1.18655324e-01 -1.40152082e-01 1.99894179e-02]\n [ 1.35939524e-01 -4.86830547e-02 2.19391193e-02]\n [-6.97312877e-02 1.42862285e-02 1.99873578e-02]\n [-1.47296727e-01 -1.07094847e-01 1.99895315e-02]\n [ 4.30504829e-01 2.90752649e-01 -3.80010575e-01]\n [ 2.88318489e-02 1.28095418e-01 1.50101349e-01]\n [-1.27065033e-01 5.42982481e-02 1.99894346e-02]\n [ 1.32355392e-01 1.38509110e-01 1.99897755e-02]\n [ 1.45377815e-01 -1.26331240e-01 1.99898966e-02]\n [-1.25087604e-01 -1.09732851e-01 1.99999996e-02]\n [-3.03088548e-03 -9.32470262e-02 1.99999996e-02]\n [-7.12911859e-02 8.85673240e-03 5.53140268e-02]\n [-1.11916699e-01 1.43940508e-01 1.99894179e-02]\n [ 6.13493584e-02 4.62546870e-02 5.81919812e-02]\n [-1.34722933e-01 8.41757208e-02 1.99890397e-02]\n [ 3.00166681e-02 1.17558494e-01 1.99899692e-02]\n [-1.46476477e-01 -1.26002967e-01 3.41819003e-02]\n [ 8.70104209e-02 -1.10975429e-01 1.99889578e-02]\n [ 1.35364430e-02 -2.53266059e-02 1.99895296e-02]\n [ 3.12485844e-02 7.87600800e-02 1.99899450e-02]\n [ 1.57931931e-02 -3.22840847e-02 1.99897643e-02]\n [-9.30068344e-02 6.91821873e-02 7.85484985e-02]\n [ 1.14153311e-01 -4.15701754e-02 1.99895296e-02]\n [ 1.23503327e-01 -1.74643900e-02 1.99894346e-02]\n [-1.35963008e-01 -1.94264371e-02 1.99895706e-02]\n [ 5.47894202e-02 -6.49432763e-02 3.06714084e-02]\n [-3.17726694e-02 -8.14228430e-02 1.99894346e-02]\n [ 6.76175505e-02 4.76007648e-02 1.99894346e-02]\n [ 1.17891247e-03 -2.36596372e-02 1.99894346e-02]\n [ 8.03068057e-02 1.47561029e-01 1.99890733e-02]\n [-7.82510191e-02 1.16686963e-01 1.99894346e-02]\n [-5.23669645e-03 9.11008716e-02 1.99895296e-02]\n [ 6.23101741e-02 -1.23464949e-01 4.67589721e-02]\n [-9.32582933e-03 -4.51933630e-02 1.99444052e-02]\n [ 1.18778639e-01 -1.53942397e-04 2.18013562e-02]\n [ 1.37602955e-01 -6.45304620e-02 1.99894141e-02]\n [ 2.43464261e-02 1.00495219e-01 6.24743067e-02]\n [-1.65878758e-01 4.85519320e-02 7.43844807e-02]\n [ 5.25085516e-02 -1.30434886e-01 1.99894346e-02]\n [ 8.50997586e-03 -2.60079671e-02 3.44580337e-02]\n [-1.24654002e-01 1.41576260e-01 1.99894141e-02]\n [-1.23553000e-01 -6.18419573e-02 1.99899133e-02]\n [-1.28587112e-01 -7.55564943e-02 1.99899655e-02]\n [-5.26096150e-02 8.98317099e-02 1.99999996e-02]\n [-1.07668355e-01 1.18410498e-01 1.99999996e-02]\n [ 3.29243243e-02 -2.81507801e-02 1.66177049e-01]\n [ 1.19254865e-01 -1.72770806e-02 2.85746343e-02]\n [-1.89830642e-02 -4.40258756e-02 3.23494114e-02]\n [-7.94501975e-02 -4.20760028e-02 4.59310375e-02]\n [-9.67372581e-02 2.00820807e-02 1.85188018e-02]\n [ 6.85319677e-02 3.64920571e-02 3.78039889e-02]\n [ 7.05806091e-02 1.19898595e-01 1.99999996e-02]\n [ 1.14571571e-01 -1.10880084e-01 1.99999996e-02]\n [-1.25928327e-01 -8.89851898e-02 1.99899543e-02]\n [ 2.83049345e-02 -1.33589758e-02 1.99897643e-02]\n [ 6.52494580e-02 1.00475915e-01 1.99894346e-02]\n [ 6.28357083e-02 -1.37856498e-01 1.99894458e-02]\n [-3.62808420e-03 -5.12064211e-02 1.99894346e-02]\n [-8.66562799e-02 -1.29195869e-01 1.99891925e-02]\n [-4.80253398e-02 -1.43292710e-01 1.99999996e-02]\n [-1.33707136e-01 -9.83965546e-02 1.99999996e-02]\n [ 2.03306731e-02 -7.35167712e-02 1.94004178e-02]\n [ 9.68657248e-03 -8.37345514e-03 1.99899357e-02]\n [ 9.31182280e-02 8.62752199e-02 1.99894346e-02]\n [-9.91224945e-02 -5.80143481e-02 1.99899375e-02]\n [-1.33339331e-01 -9.29551572e-02 1.99897662e-02]\n [ 1.05944023e-01 -1.49203241e-01 1.99894346e-02]\n [-1.79428849e-02 -5.06787039e-02 4.84244749e-02]\n [-1.35339603e-01 8.58284980e-02 1.99896358e-02]\n [-5.14609367e-02 1.15533516e-01 1.99894346e-02]\n [ 9.80445817e-02 -1.64054353e-02 1.99899152e-02]\n [ 1.19269133e-01 1.04562849e-01 1.99899282e-02]\n [ 3.18100373e-03 3.83315422e-02 1.99895296e-02]\n [ 1.25912398e-01 -5.26371226e-02 1.99899245e-02]\n [-7.34868571e-02 -2.03161482e-02 9.95647833e-02]\n [ 6.28447756e-02 -1.10124409e-01 2.62627341e-02]\n [ 9.08977017e-02 7.66953314e-03 1.99894700e-02]\n [ 1.18453197e-01 1.30116403e-01 1.99894346e-02]\n [ 2.86291651e-02 9.98316426e-03 3.30543444e-02]\n [-4.70282882e-02 -3.27889323e-02 6.55203462e-02]\n [ 4.48921062e-02 1.14096496e-02 3.12421806e-02]\n [ 2.80000940e-02 5.15701585e-02 1.99895296e-02]]", "desired_goal": "[[-0.04482553 0.06513123 0.18580109]\n [ 0.10932823 0.05549219 0.17730343]\n [ 0.12972327 0.0535234 0.1624687 ]\n [-0.02661117 0.11038361 0.02 ]\n [-0.13812663 0.13673715 0.02 ]\n [ 0.03109119 -0.08744577 0.16517016]\n [-0.12734245 -0.08321685 0.20753737]\n [-0.11881466 -0.00409633 0.07118485]\n [ 0.06472831 -0.021496 0.02 ]\n [-0.10564885 -0.11097367 0.02 ]\n [ 0.1463732 -0.06272421 0.02 ]\n [-0.05884846 -0.05392532 0.04051466]\n [ 0.04624008 -0.04650621 0.13824958]\n [ 0.05383161 0.09112287 0.02 ]\n [ 0.04937568 0.00733953 0.03529327]\n [ 0.02444497 0.14182025 0.04735903]\n [-0.14786272 0.0967777 0.20936243]\n [ 0.08721279 -0.06904025 0.12046109]\n [-0.1354209 -0.13515079 0.02 ]\n [ 0.02347444 -0.09788394 0.15366322]\n [-0.14807123 -0.11608773 0.21854807]\n [ 0.13217092 -0.01497211 0.04259743]\n [ 0.11562318 0.14515132 0.12759665]\n [-0.0850047 0.07663892 0.02 ]\n [ 0.1255104 -0.07993972 0.02607646]\n [-0.10474659 -0.01123972 0.21540953]\n [-0.02631759 -0.14111862 0.05953533]\n [-0.14613014 -0.07976392 0.02 ]\n [-0.00205057 0.11217725 0.02 ]\n [-0.04026955 -0.14887618 0.0881675 ]\n [ 0.08955614 0.0682606 0.02 ]\n [-0.09614023 0.09584069 0.21080044]\n [ 0.07459273 -0.07225904 0.18938383]\n [ 0.06377618 -0.06769027 0.18003969]\n [ 0.13766836 -0.1136298 0.04379477]\n [ 0.04567338 0.12674986 0.02 ]\n [ 0.14616144 0.05845238 0.2135163 ]\n [ 0.02207358 0.05737909 0.14815335]\n [ 0.10710134 -0.12141269 0.04027896]\n [ 0.1398907 0.05854827 0.02 ]\n [ 0.04470894 -0.04871358 0.1311461 ]\n [-0.00353671 -0.11577507 0.06863656]\n [ 0.1231508 -0.08026459 0.02 ]\n [-0.06250678 -0.06180933 0.02 ]\n [-0.07114562 0.08047222 0.19065847]\n [ 0.04733445 0.08770255 0.10801405]\n [ 0.14064313 0.04461065 0.2071619 ]\n [ 0.05303917 0.13557684 0.11426703]\n [-0.12718624 -0.14868604 0.18850808]\n [ 0.0070399 -0.06281528 0.1005153 ]\n [ 0.05404096 -0.14368823 0.11793354]\n [-0.13140698 0.14264718 0.11365416]\n [ 0.00747063 0.11837354 0.06781415]\n [-0.11137456 -0.10495408 0.07938404]\n [-0.05175591 -0.10418921 0.21757942]\n [-0.02832646 0.03251612 0.09165364]\n [-0.05627028 -0.13971943 0.0771515 ]\n [ 0.08795053 0.14145243 0.02 ]\n [ 0.07210474 0.03585405 0.18718737]\n [ 0.0727721 0.13396677 0.0868795 ]\n [-0.05174988 0.12229738 0.09284894]\n [ 0.0839002 0.05664813 0.21330722]\n [ 0.13128601 0.0881055 0.0572284 ]\n [-0.13670094 0.08705345 0.14595519]\n [ 0.00639232 0.09051395 0.08752944]\n [-0.14693405 0.05112474 0.02 ]\n [-0.14726569 -0.07919221 0.17807664]\n [-0.12957641 -0.04102813 0.02 ]\n [-0.01047974 -0.08277223 0.06634351]\n [ 0.11364474 0.02483175 0.14252062]\n [-0.10174742 -0.05274835 0.15088521]\n [-0.09707424 -0.07485142 0.10027996]\n [ 0.09358345 0.08041651 0.20625773]\n [ 0.06439672 0.09796576 0.1416866 ]\n [ 0.04167712 -0.06919596 0.15690771]\n [ 0.0282113 -0.13800183 0.02 ]\n [-0.12522186 -0.13778576 0.1257426 ]\n [ 0.13323018 -0.07895552 0.10740962]\n [-0.10485562 -0.0787943 0.21083173]\n [ 0.1392954 -0.084281 0.08200591]\n [-0.08638639 0.0749637 0.04007916]\n [ 0.1317838 -0.13418162 0.11564395]\n [-0.02375625 0.1488122 0.1665878 ]\n [ 0.08299121 -0.10791762 0.02 ]\n [ 0.02058736 -0.0635467 0.05700657]\n [-0.08854329 0.0945682 0.02982171]\n [-0.01364588 -0.10133658 0.09422234]\n [-0.01642327 0.13298483 0.194217 ]\n [-0.05615054 -0.14426558 0.19307114]\n [ 0.06525942 -0.14253977 0.02 ]\n [-0.11561833 0.04047634 0.02097237]\n [ 0.05384538 0.11960263 0.02 ]\n [ 0.14898111 -0.10328248 0.02 ]\n [ 0.00993321 0.00534422 0.02 ]\n [-0.09079437 0.10168929 0.03076656]\n [ 0.10274436 0.14605702 0.02 ]\n [-0.06945211 -0.08890444 0.02 ]\n [-0.03091214 0.01815641 0.18031184]\n [ 0.02659079 0.09025478 0.17796032]\n [-0.10787709 0.12168663 0.05935752]\n [-0.05076992 -0.10337866 0.02 ]\n [-0.07510263 -0.10999213 0.11117769]\n [-0.04867084 -0.05013083 0.02 ]\n [ 0.13317277 -0.01708428 0.02 ]\n [ 0.10708371 0.1380704 0.12021369]\n [ 0.07031049 0.04677744 0.12842216]\n [-0.11384957 -0.06420993 0.14367747]\n [ 0.09886255 0.00493135 0.02 ]\n [ 0.1386637 -0.0505421 0.0888709 ]\n [-0.10099202 0.09654739 0.06312364]\n [ 0.03763323 -0.04459436 0.14061384]\n [ 0.04721078 -0.08840158 0.02 ]\n [-0.00627158 -0.03357679 0.06690113]\n [-0.00499375 -0.00427051 0.07847828]\n [-0.06283148 0.11365382 0.06753457]\n [ 0.0214248 -0.0274132 0.13672595]\n [-0.1482322 0.1302415 0.04122673]\n [-0.02701768 -0.02908409 0.02 ]\n [ 0.01298261 -0.05954097 0.03697354]\n [-0.11410812 0.09504519 0.05938072]\n [ 0.13288103 0.12397722 0.05608547]\n [-0.07420941 0.08217189 0.03910743]\n [ 0.04339096 -0.06083061 0.07503179]\n [ 0.08069213 0.10614676 0.16518119]\n [ 0.10957544 -0.04593651 0.02 ]\n [-0.01358799 -0.13409343 0.1688038 ]\n [ 0.11763176 0.01805987 0.02 ]\n [-0.12773606 0.07516056 0.15972686]\n [-0.06100191 0.01259694 0.03111819]\n [-0.0096819 -0.14222014 0.21688375]\n [-0.01919268 0.07720285 0.02 ]\n [ 0.03423909 0.01560044 0.20493987]\n [-0.13395414 0.03989164 0.10615983]\n [ 0.02013005 0.07814924 0.19675465]\n [-0.12263484 0.0990574 0.02 ]\n [ 0.06274613 -0.05729666 0.19540904]\n [-0.05675748 0.11624753 0.14244461]\n [-0.02350532 0.10733644 0.02 ]\n [-0.11714758 -0.03277598 0.02177832]\n [ 0.14607933 -0.11425282 0.05847716]\n [ 0.06368047 0.01805869 0.12667291]\n [ 0.01901675 -0.12989226 0.06845258]\n [-0.0157866 0.03448691 0.02 ]\n [ 0.0089862 0.01307726 0.02 ]\n [-0.03558202 0.06500073 0.02 ]\n [-0.12353706 -0.06900612 0.02 ]\n [-0.12022094 -0.03871292 0.15438762]\n [-0.08363778 -0.14291431 0.07807159]\n [ 0.09627403 -0.00639924 0.02 ]\n [-0.10888675 -0.0475584 0.02 ]\n [ 0.13226408 0.13519886 0.05999156]\n [-0.09256388 -0.11275772 0.19119804]\n [-0.00906284 -0.00604672 0.07170917]\n [-0.02383299 -0.01773545 0.14510721]\n [ 0.05823766 0.05428147 0.15014885]\n [ 0.10731086 0.07536421 0.05466153]\n [-0.01592554 -0.14807484 0.14382955]\n [-0.09664991 -0.00321798 0.1644719 ]\n [-0.00347215 -0.14811555 0.02 ]\n [ 0.06253552 -0.03900625 0.21883662]\n [-0.06185669 -0.0630071 0.18628736]\n [ 0.00239301 -0.07483184 0.10820197]\n [-0.12134449 0.13619126 0.20220485]\n [ 0.09251579 0.0003648 0.1232095 ]\n [ 0.1450423 0.08381508 0.14343022]\n [-0.00852704 -0.03713113 0.02409647]\n [-0.1094028 0.02108045 0.04546515]\n [ 0.028886 -0.03815759 0.21238114]\n [ 0.14021991 -0.1270772 0.18823875]\n [ 0.13087931 0.07394069 0.0968916 ]\n [-0.0026641 -0.0645012 0.11586131]\n [ 0.06849649 -0.10838565 0.06559486]\n [-0.07290704 0.03071123 0.14010349]\n [ 0.09216139 -0.0945714 0.17780259]\n [-0.11182738 0.06696777 0.02 ]\n [-0.12188821 0.1356494 0.19254377]\n [ 0.01870972 -0.08840536 0.02 ]\n [ 0.00395324 0.14251053 0.02 ]\n [ 0.1486634 0.04011701 0.02 ]\n [ 0.12934396 0.11961433 0.1660985 ]\n [-0.01063115 -0.09044803 0.02 ]\n [-0.10725246 -0.06954145 0.02 ]\n [-0.02350265 -0.03389052 0.08570133]\n [-0.03874832 0.02590197 0.02 ]\n [-0.13676976 0.03289856 0.02 ]\n [-0.02966912 0.12548769 0.18286107]\n [ 0.12316756 -0.04403741 0.10038878]\n [ 0.0729753 0.07561797 0.13230982]\n [-0.0493711 0.11661725 0.11659042]\n [-0.13796295 -0.14687157 0.14788632]\n [-0.04898091 -0.12181186 0.21621004]\n [-0.02643662 0.03438473 0.02 ]\n [ 0.06388426 -0.1297807 0.02 ]\n [-0.06316874 -0.00459083 0.2156281 ]\n [ 0.01229591 0.12588562 0.10112455]\n [-0.07752683 0.13419391 0.12729019]\n [ 0.0997547 -0.12712167 0.11621068]\n [-0.08864271 0.09406308 0.02 ]\n [-0.01498733 -0.12813842 0.04046568]\n [ 0.11191893 -0.09148575 0.09382682]\n [ 0.04098891 0.08410061 0.02 ]\n [-0.08433978 -0.02654358 0.04145649]\n [-0.05647084 0.10034207 0.18485138]\n [ 0.14675075 -0.07511966 0.02 ]\n [ 0.04339787 -0.05699359 0.11494757]\n [-0.10127135 0.06928799 0.17872295]\n [ 0.02708545 -0.0825503 0.1894349 ]\n [ 0.00640618 0.08015008 0.02 ]\n [-0.00587753 0.09254404 0.02 ]\n [-0.14790003 0.01477247 0.02 ]\n [ 0.14868169 0.10385131 0.15983647]\n [-0.13851821 0.12419111 0.1935449 ]\n [ 0.1370584 -0.08440861 0.20838755]\n [ 0.14497036 -0.13399652 0.10937919]\n [ 0.13839802 0.02623154 0.02 ]\n [ 0.00096498 -0.05739851 0.16791327]\n [ 0.14386626 -0.03271703 0.18018441]\n [ 0.05329591 -0.03719702 0.09776166]\n [ 0.14881901 0.05581366 0.09083737]\n [ 0.12542869 -0.04214339 0.19122836]\n [ 0.00747728 0.01963175 0.19985315]\n [ 0.03655722 0.10178488 0.03253936]\n [-0.01531902 0.03552679 0.14748861]\n [ 0.08720995 0.0227015 0.02 ]\n [ 0.05067436 0.10373687 0.02 ]\n [-0.01127571 -0.05860024 0.09105353]\n [-0.10412136 0.14225608 0.14635772]\n [ 0.02647574 -0.0070406 0.14564802]\n [-0.08479553 0.11376837 0.08565948]\n [ 0.05319518 -0.07158594 0.02 ]\n [ 0.08096309 0.06801643 0.18412763]\n [-0.01272254 -0.11679308 0.06090404]\n [ 0.03409753 -0.02578322 0.19844092]\n [-0.13254471 -0.02356515 0.13437824]\n [-0.08732207 -0.02798836 0.02 ]\n [ 0.05922688 0.01906686 0.02 ]\n [-0.00442401 -0.08004801 0.13714352]\n [-0.07234767 -0.0824036 0.02007709]\n [ 0.01392453 -0.02568893 0.18732493]\n [-0.00046149 0.03366505 0.17343765]\n [ 0.04008093 0.12210183 0.1493195 ]\n [-0.0885895 0.02594725 0.20605934]\n [ 0.08702379 -0.10982041 0.02 ]\n [ 0.0132695 0.03262353 0.03047459]\n [-0.08442567 0.01756514 0.17733885]\n [-0.1114694 0.08715195 0.03908225]\n [-0.08364749 0.13949966 0.08410504]\n [-0.00350815 0.14481066 0.20952095]\n [-0.05449042 -0.02293814 0.21041243]\n [-0.12575734 -0.11788542 0.14821702]\n [-0.07066762 -0.11712585 0.19249307]\n [ 0.1401629 -0.1111481 0.1634712 ]\n [ 0.05709329 -0.06434511 0.02 ]\n [-0.10884327 -0.12605919 0.117162 ]\n [ 0.10272045 0.12831888 0.02 ]\n [ 0.11813519 0.13245872 0.11638785]]", "observation": "[[-4.8552986e-02 5.9875764e-02 1.1956212e-01 ... -9.8554122e-01\n -8.8477618e-01 8.3999997e-01]\n [ 9.8542653e-02 -3.1899661e-02 1.3796774e-01 ... -4.7876885e-05\n -9.6618773e-05 9.5999998e-01]\n [ 8.7752014e-02 7.1119636e-02 6.3660704e-02 ... 3.2343276e-02\n 4.4499090e-01 8.6000001e-01]\n ...\n [-5.1793929e-02 -2.0953095e-02 5.0247826e-02 ... -2.2969530e+00\n -8.0990590e-02 8.6000001e-01]\n [ 4.6118047e-02 -3.8788863e-04 1.4664850e-02 ... -3.3588824e-01\n 9.5787019e-01 8.9999998e-01]\n [ 5.6426916e-02 2.3238041e-02 1.7774394e-01 ... -2.5399815e-04\n -9.6700052e-05 9.8000002e-01]]"}, "_episode_num": 54832, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwBgAAAAAAACMAWyUSweMAXSUR0CFds5Fw1iwdX2UKGgGR8AiAAAAAAAAaAdLCmgIR0CFcEUTtb9qdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0CFaxDKoybhdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0CFam5oXbdrdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0CFZkdPLxI8dX2UKGgGR8AcAAAAAAAAaAdLCGgIR0CFZJakhzNmdX2UKGgGR8AiAAAAAAAAaAdLCmgIR0CFY5jvNNahdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0CFWFWI42jxdX2UKGgGR8AQAAAAAAAAaAdLBWgIR0CFV4otthuwdX2UKGgGR8AQAAAAAAAAaAdLBWgIR0CFVuq//NqydX2UKGgGR8AiAAAAAAAAaAdLCmgIR0CFVJFKkEcLdX2UKGgGR8AkAAAAAAAAaAdLC2gIR0CFUKm3vx6OdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0CFp7dP+GXYdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0CFpiTsY2sJdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CFpGpvxYq5dX2UKGgGR8AkAAAAAAAAaAdLC2gIR0CFng87p3X7dX2UKGgGR8AYAAAAAAAAaAdLB2gIR0CFkod4mkWRdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0CFkX8IiTt+dX2UKGgGR8AiAAAAAAAAaAdLCmgIR0CFkINqgyuZdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0CFhaatLcsUdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0CFhGBmwqy4dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CFggZQYUFjdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0CFf7rjYI0JdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0CFfx2wFC9idX2UKGgGR8AkAAAAAAAAaAdLC2gIR0CFfA1wYLssdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0CFePPldTo/dX2UKGgGR8AgAAAAAAAAaAdLCWgIR0CFd/VS4vvjdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0CFduVwgkkbdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0CFdShPCVKPdX2UKGgGR8AiAAAAAAAAaAdLCmgIR0CFdNVkMCtBdX2UKGgGR8AiAAAAAAAAaAdLCmgIR0CFc84LkS26dX2UKGgGR8AiAAAAAAAAaAdLCmgIR0CFcIujASFodX2UKGgGR8AcAAAAAAAAaAdLCGgIR0CFa0E2YOUddX2UKGgGR8AUAAAAAAAAaAdLBmgIR0CFauoNutOmdX2UKGgGR8AiAAAAAAAAaAdLCmgIR0CFaHSWqtHQdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0CFZXOxB3RpdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0CFZHA1vVEvdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0CFZCXWvr4WdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0CFY9q59Vm0dX2UKGgGR8AgAAAAAAAAaAdLCWgIR0CFY4nCwbEQdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0CFYzpblijMdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0CFYHQNTcZcdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0CFWtLQHAymdX2UKGgGR8AQAAAAAAAAaAdLBWgIR0CFWhNahYeUdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CFWcKc/dIodX2UKGgGR8AYAAAAAAAAaAdLB2gIR0CFWAgUUO/ddX2UKGgGR8AUAAAAAAAAaAdLBmgIR0CFVw8xsVL0dX2UKGgGR8AoAAAAAAAAaAdLDWgIR0CFVgZQYUFjdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0CFUyv3ai9JdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0CFqEubI91VdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0CFpDmW+oLodX2UKGgGR8AgAAAAAAAAaAdLCWgIR0CFo+RKYiPidX2UKGgGR8AiAAAAAAAAaAdLCmgIR0CFnH2g3974dX2UKGgGR8AUAAAAAAAAaAdLBmgIR0CFm4CVbA1vdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0CFl4F6AvtddX2UKGgGR8AiAAAAAAAAaAdLCmgIR0CFlhBMzuWsdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0CFk6t3fQ8fdX2UKGgGR8AiAAAAAAAAaAdLCmgIR0CFkbA31jAjdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0CFj7nV5KODdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0CFj2er+5vtdX2UKGgGR8AiAAAAAAAAaAdLCmgIR0CFjxbt7a7FdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0CFjHPxhDw6dX2UKGgGR8AgAAAAAAAAaAdLCWgIR0CFiDVKf4ATdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CFhz9wWFewdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0CFhu4yXUpedX2UKGgGR8AkAAAAAAAAaAdLC2gIR0CFgEWSlnAZdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0CFdkyu6mO3dX2UKGgGR8AgAAAAAAAAaAdLCWgIR0CFdZKvmozfdX2UKGgGR8AiAAAAAAAAaAdLCmgIR0CFdTyhBZ6ldX2UKGgGR8AQAAAAAAAAaAdLBWgIR0CFcRYAbQ1KdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0CFcHFvybx3dX2UKGgGR8AYAAAAAAAAaAdLB2gIR0CFae/ATIvKdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0CFaKKBNEgGdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0CFZbIFvAGjdX2UKGgGR8AkAAAAAAAAaAdLC2gIR0CFV8bDuSfUdX2UKGgGR8AkAAAAAAAAaAdLC2gIR0CFVG6XBxgidX2UKGgGR8AQAAAAAAAAaAdLBWgIR0CFq2jHGS6ldX2UKGgGR8AgAAAAAAAAaAdLCWgIR0CFqA3Lmp2mdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0CFpO7GvOhTdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0CFo1X7Lt/ndX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CFn1OO801qdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0CFngJw84gidX2UKGgGR8AgAAAAAAAAaAdLCWgIR0CFnQmixmkFdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0CFm1WFN+LFdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0CFlX9XtBv8dX2UKGgGR8AkAAAAAAAAaAdLC2gIR0CFjpStvGZNdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0CFjUkSmIj4dX2UKGgGR8AcAAAAAAAAaAdLCGgIR0CFi/w0fozOdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0CFhmwkgOjJdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0CFgGpSaVlgdX2UKGgGR8AoAAAAAAAAaAdLDWgIR0CFfmGO+7DmdX2UKGgGR8AgAAAAAAAAaAdLCWgIR0CFdK3pfQa8dX2UKGgGR8AcAAAAAAAAaAdLCGgIR0CFb/5B1LamdX2UKGgGR8AcAAAAAAAAaAdLCGgIR0CFb6evIOpbdX2UKGgGR8AUAAAAAAAAaAdLBmgIR0CFZI1gpjMFdX2UKGgGR8AmAAAAAAAAaAdLDGgIR0CFZDjm0VrRdX2UKGgGR8AiAAAAAAAAaAdLCmgIR0CFYhe0ojOcdX2UKGgGR8AkAAAAAAAAaAdLC2gIR0CFYcmAskIHdX2UKGgGR8AYAAAAAAAAaAdLB2gIR0CFX1qveP7vdX2UKGgGR8AQAAAAAAAAaAdLBWgIR0CFXvs3Q2MsdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhlLg=="}, "_n_updates": 59976, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWV6wQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWFAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsUhZRoJHSUUpRoJ2gcKJYUAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQEBAQEBlGggSxSFlGgkdJRSlGgsSxSFlGguaBwollAAAAAAAAAAAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAAACUaBZLFIWUaCR0lFKUaDNoHCiWUAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAACAP5RoFksUhZRoJHSUUpRoOIxmWy0xMC4gLTEwLiAtMTAuIC0xMC4gLTEwLiAtMTAuIC0xMC4gLTEwLiAtMTAuIC0xMC4gLTEwLiAtMTAuIC0xMC4gLTEwLgogLTEwLiAtMTAuIC0xMC4gLTEwLiAtMTAuICAgMC5dlGg6jFJbMTAuIDEwLiAxMC4gMTAuIDEwLiAxMC4gMTAuIDEwLiAxMC4gMTAuIDEwLiAxMC4gMTAuIDEwLiAxMC4gMTAuIDEwLiAxMC4KIDEwLiAgMS5dlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10.\n -10. -10. -10. -10. -10. 0.], [10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.\n 10. 1.], (20,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVTwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoO4oQT6Q3kHhR0fHIDcizY9iOXowDaW5jlIoQTxsb9bJGJ3u+tnfsKuL8DnWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "buffer_size": 1000000, "batch_size": 2048, "learning_starts": 10000, "tau": 0.05, "gamma": 0.95, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVPwAAAAAAAACMJ3N0YWJsZV9iYXNlbGluZXMzLmhlci5oZXJfcmVwbGF5X2J1ZmZlcpSMD0hlclJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.her.her_replay_buffer", "__annotations__": "{'env': typing.Optional[stable_baselines3.common.vec_env.base_vec_env.VecEnv]}", "__doc__": "\n Hindsight Experience Replay (HER) buffer.\n Paper: https://arxiv.org/abs/1707.01495\n\n Replay buffer for sampling HER (Hindsight Experience Replay) transitions.\n\n .. note::\n\n Compared to other implementations, the ``future`` goal sampling strategy is inclusive:\n the current transition can be used when re-sampling.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param env: The training environment\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n :param n_sampled_goal: Number of virtual transitions to create per real transition,\n by sampling new goals.\n :param goal_selection_strategy: Strategy for sampling goals for replay.\n One of ['episode', 'final', 'future']\n :param copy_info_dict: Whether to copy the info dictionary and pass it to\n ``compute_reward()`` method.\n Please note that the copy may cause a slowdown.\n False by default.\n ", "__init__": "<function HerReplayBuffer.__init__ at 0x7d5ef3a4d8a0>", "__getstate__": "<function HerReplayBuffer.__getstate__ at 0x7d5ef3a4d940>", "__setstate__": "<function HerReplayBuffer.__setstate__ at 0x7d5ef3a4d9e0>", "set_env": "<function HerReplayBuffer.set_env at 0x7d5ef3a4da80>", "add": "<function HerReplayBuffer.add at 0x7d5ef3a4dbc0>", "_compute_episode_length": "<function HerReplayBuffer._compute_episode_length at 0x7d5ef3a4dc60>", "sample": "<function HerReplayBuffer.sample at 0x7d5ef3a4dd00>", "_get_real_samples": "<function HerReplayBuffer._get_real_samples at 0x7d5ef3a4dda0>", "_get_virtual_samples": "<function HerReplayBuffer._get_virtual_samples at 0x7d5ef3a4de40>", "_sample_goals": "<function HerReplayBuffer._sample_goals at 0x7d5ef3a4dee0>", "truncate_last_trajectory": "<function HerReplayBuffer.truncate_last_trajectory at 0x7d5ef3a4df80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d5ef3a5e980>"}, "replay_buffer_kwargs": {"goal_selection_strategy": "future", "n_sampled_goal": 4}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVeAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAYwIYnVpbHRpbnOUjAdnZXRhdHRylJOUaACMElRyYWluRnJlcXVlbmN5VW5pdJSTlIwEU1RFUJSGlFKUhpSBlC4="}, "use_sde_at_warmup": false, "target_entropy": -4.0, "ent_coef": "auto", "target_update_interval": 1, "top_quantiles_to_drop_per_net": 2, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBUsTQzSVAZcAdAEAAAAAAAAAAAAAAgCJAXwApgEAAKsBAAAAAAAAAACmAQAAqwEAAAAAAAAAAFMAlE6FlIwFZmxvYXSUhZSMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMCDxsYW1iZGE+lIwhZ2V0X3NjaGVkdWxlX2ZuLjxsb2NhbHM+LjxsYW1iZGE+lEthQxr4gAClZahOqE7QO03RLE7ULE7RJk/UJk+AAJRDAJSMDnZhbHVlX3NjaGVkdWxllIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCN9lH2UKGgaaA+MDF9fcXVhbG5hbWVfX5RoEIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoG4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlGgCKGgHKEsBSwBLAEsBSwFLE0MIlQGXAIkBUwCUaAkpjAFflIWUaA6MBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuFQwj4gADYDxKICpRoEowDdmFslIWUKXSUUpRoF05OaB8pUpSFlHSUUpRoJWg/fZR9lChoGmg1aChoNmgpfZRoK05oLE5oLWgbaC5OaC9oMUc/QGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaEZdlGhIfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-6.8.0-35-lowlatency-x86_64-with-glibc2.35 # 35.1-Ubuntu SMP PREEMPT_DYNAMIC Thu May 23 14:15:41 UTC 2024", "Python": "3.11.0rc1", "Stable-Baselines3": "2.3.2", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.23.1", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.1"}} |