colinrgodsey commited on
Commit
32da6cf
·
verified ·
1 Parent(s): 510d578

First commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 265.35 +/- 14.83
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 222.32 +/- 18.92
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7202f3657ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7202f3657f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7202f365c040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7202f365c0d0>", "_build": "<function ActorCriticPolicy._build at 0x7202f365c160>", "forward": "<function ActorCriticPolicy.forward at 0x7202f365c1f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7202f365c280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7202f365c310>", "_predict": "<function ActorCriticPolicy._predict at 0x7202f365c3a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7202f365c430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7202f365c4c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7202f365c550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7202f365b1b0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 10485760, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718203588545161990, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdRAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAEAAAAAAAAFpWrr3+G0U/zjKjvQlaAr95GB++JYtIvQAAAAAAAAAAzYe/vI8eAbrSMie5HFMetM/2tbrmm0g4AACAPwAAgD9mie889vg9uj008LqRvvw0peMsu3DjCjoAAIA/AACAP00pTT0USKG6cMHAOhHB6jRxoKk4Q8zcuQAAgD8AAIA/ZqWivK6pprrFw1y6/HBQtYQd7Tk9xX05AACAPwAAgD+gnRO+GJTSPV5A0j5gWJi+nw8LPm+mRj4AAAAAAAAAAPMSkT1IG5+6Sr6AOk9yVTXuRbS6lP+UuQAAgD8AAIA/wNPivTh7Mj+24Dq9aqIkv20Fib4BUwO9AAAAAAAAAABm4vA8j45RuopfhLpDaMq120kROoGUmjkAAIA/AACAP5pe9LwpiCW6YJKZuzfNJLZXxkY7MnOwOgAAgD8AAIA/Go2tPSkQQLp4izK8F0NhNAhkObtVpOCzAACAPwAAAAAAAj68w8EuuvKwCDua18605Pqhuop3w7MAAIA/AACAP82v5Tx7Gom6wXctuj6unraWL1A7fS1FOQAAgD8AAIA/ZgoVvCkodrqvgIU626c+NjRsPrvoozk1AACAPwAAgD+ahTi8uPa1ueqzSLu1zjW3sTOyO1pZajoAAIA/AACAP2aSorzDiVq6HrlwOksFVDXrn826TcCNuQAAgD8AAIA/mj//vC+vGT+G+Kk8QjPwvp/Qkb2NZ1k9AAAAAAAAAAAAdzk94dqIuDTatrvFzK82XxbGunoeJbYAAIA/AACAP+aUsj17yIy6De4/u0Be5DftpPW6rW9XOgAAgD8AAIA/AFClusNdLLo/Di48u8qUtTV4tzuep5G0AACAPwAAgD8AL7M9SFOpumWXtTruXxi3xY6quhREyLkAAIA/AACAPzNXUj32lHG69XLwOuRgpTXkWzk6yjEMugAAgD8AAAAAZg9RPXs2prpW9LS6HQmIuR+/n7l9oNw5AACAPwAAgD9mIqg9KQhUunD4RzsCY+w30bu/OXCCCLoAAIA/AACAP/Oer73XRBy79jcNuqxJ8rsBEmC8473YvAAAAAAAAIA/AIz/O48KXbpDNwe51WjjsmqYe7vfPh04AACAPwAAgD8APLa7uI72uXpgs7qLbfO1dxt8O7sUzzkAAIA/AACAPxqOML1I16a6+PMpO0Jshbbt9446c2R2tQAAgD8AAIA/MyfRPI+CWrhow667JHgJN5sCrTraG4K2AACAPwAAgD8ajyu+MBaXP4KHpb41rAm/Phmavkv6xL0AAAAAAAAAAJqru7x7Tqm602ESuk9tBrXuUbg5ntgnOQAAgD8AAIA/ADu5PfakK7oaVbY5poAANS4lTboDS9C4AACAPwAAgD/a3oe9SEH9uE6lAjs4YAE4W12kOhZ9oLkAAIA/AACAP83Ckz2PtnS61LIPvJ6MebVfrqW6Fu3fNAAAgD8AAIA/TSB5PVxHLrolAJe7TRkANveAMbvIkrE6AACAPwAAgD+aS2K8SPOWuhJOlTpat4Q1u6KSuiy8rLkAAIA/AACAP5oXvDx7mpa63p+Hu4UlmDhsNdS5JSJQOQAAgD8AAIA/AJDQPLge07kyfcS7bXg6OHZQ/jo7Uhi3AACAPwAAgD/NwHK8FKSNurK6GDtzBR80+CyeOZokCjMAAIA/AACAP5o3rTxIk4q6WiajO6vPOTgXUkq7c/pptwAAgD8AAIA/AMglPClga7pd/u63UcgYMvDykLtYMQk3AACAPwAAgD+aWP28j55ZupJgG7rN8aa0Yztfupp5MDkAAIA/AACAP83uqTzDjXG66LJTu4DqmraD3he7HmkMNgAAgD8AAIA/msE5O/aESLqK4oq7m126OP7lsTrn6xY6AACAPwAAgD+AIHY9XINSugJHNDj51akzyu6LOzPvULcAAIA/AACAP2bt8zyPXle6MIN6OuHPz7V5E626dRuRuQAAgD8AAIA/zemdvOxp7LkGvvc599uaM+xh1rol9g+5AACAPwAAgD9mocm89oR+urITcLo1BFq1t6/bun9HjDkAAIA/AACAP41/pD1cDxK6ArErumR90LVAnpk7UelHOQAAgD8AAIA/zUxTOwrXb7k5EUI8cuieNWn/2Dt8aJg0AACAPwAAgD/N1908w8EcunDCQLtDPbQ2RAhYu4qpH7YAAIA/AACAP+a2E732zCe64hqctw+0JbNgkWc5iv61NgAAgD8AAIA/Zi5lO5CjsD/+4uQ990P4vkPWG7t6J947AAAAAAAAAACmbpE9j95SukbR9jhiZcm1EDoDuWmWy7QAAIA/AACAP82qDz32RFi6r36COyOUEDgvIdG6+vyFNgAAgD8AAIA/mm0lvI+OQrr6syc7jlEPNVN4ArohjAY0AACAPwAAgD+mzp49Up/Uu0M8SLx8U4s8WA0nPQDdbL0AAIA/AAAAAE3Jkj0pUFq6OCjhOoKzsTXuXYy5y2sCugAAgD8AAIA/ZuIDvcNpBbqLbmc5YtdlNB9e5DpxaYa4AACAPwAAgD/dZ2q+BKMMP+L+ij4rAQq/Pe7zvaI/QD4AAAAAAAAAAOZ8UL2uVa+6zW9cOSCIODQmDsS4cut7uAAAgD8AAIA/Gv4MvVJ4pTjtzY06/BfyNHYuAzxSe625AACAPwAAgD8zbXW9SFnFOwt9YD4+EhS+a2JXPd5lZ78AAAAAAACAP5pZrDsfrc65alzaOv+YCDaSmKY504D9uQAAgD8AAIA/mvWzu3syjLokzwC8t2+WNzXFRLvzMPu2AACAPwAAgD9NQmG97LHhOK6gdDuGeB80E8HbuhYeFTMAAIA/AACAPzMTWTrhaom6lnXpujxebDUhRyy7UJkEOgAAgD8AAIA/GjCFvSl4MrqO/qS57WM6tUeQjTvWEsQ4AACAPwAAgD8ArzK9rmmtuoC7N7o6BEa18KGfOo4UUjkAAIA/AACAPwCSO709mhS5KGhvOkBpGLVrCFq7YgqMuQAAgD8AAIA/AG2tvBQcgrqau3+5ZFBgtOvjZbuaRpU4AACAPwAAgD8AliA8j5YuukIIAju3gYQ1qUJruUrIGboAAIA/AACAP5pPOrzsAce5ZqvGO6mSIzzO0uQ67aTOOwAAgD8AAIA/TRSnPY++abpF0ey5IF/JtAnmWLsBWAk5AACAPwAAgD/N/Gu8KriyP5CK8b7kZHm+PoIgPJ5HkTwAAAAAAAAAAE0jaz2PAhe6ujQbObrQGjTIlCi7bRY5uAAAgD8AAIA/s7FDPXuekrp/P4C21wrdMazfUTpuL5o1AACAPwAAgD8ADCs8rpGXuv7SBbssuSY1UhKfOnKDlLQAAIA/AACAPzPXsr3DdUe6Is6ROEVj7jOmcSw76uGotwAAgD8AAIA/TY5ivT2KDLlAWnu6joO1tVmw6zqvSpY5AACAPwAAgD8zmwI8riOBuq73zzpGhTc2jITwOisW8bkAAIA/AACAP8BlPb70sos+AiRZPu9Azb6RhBq9uUICPgAAAAAAAAAA5iohPSnAWboaLwa5Jke4s015kDow5Ro4AACAPwAAgD8a0Ro9j2ZPuqvpWzX8qJsvPDndum7tiLQAAIA/AACAP808qTwfxc65UjmCu26ZczifTYY74ooSOgAAgD8AAIA/TYNmPcONJrpmwJg7YjobtjnYHzti5LK6AACAPwAAgD8z22A89qRnujYlhDMEIiYwR2XJuYW7trMAAIA/AACAP2ZvfT1SQP25KfoEOTUZgzTDNUe6SmUcuAAAgD8AAIA/mto4PeyfobubNhs8IyKgPBXyDr1u34o9AACAPwAAgD8zYY88FNKJujhajbv3UBy1YnvwuseZoToAAIA/AACAPwChET1cA1S6t0wPtTuuYLL9TIw7a1M2NAAAgD8AAIA/ZlLhPK6PyjmhD6+7Oo50PPqekLt6aDU4AACAPwAAAABmcIC97LHguX6k0DqaOK41jQPmOs4Y+7kAAIA/AACAPwA4jj1cs0C6ClGAt0S1HLLbV6+6iSSVNgAAgD8AAIA/5rZvvVyjHbpgxrq79T0OOKg+K7m+rgK3AACAPwAAgD8zjSC9FPCkurZvnrtwE0c40hQ/OrRFqTcAAIA/AACAP2YdvTyPMjK6Bg6vOdXVYDYIAwI7VZHLuAAAgD8AAIA/msuxPY/yKbproYO6lNWFNqp3CDsEhZY5AACAPwAAgD+ATms99lhouj8iLjii9PIyVxQmOxlCSrcAAIA/AACAP80RjjxcTxS6ka+cO81zPTj9D5u76rFjuAAAgD8AAIA/AJJGvR/92LkvSqS6HmWeNV+3ozp+HsA5AAAAAAAAgD/Ny6g9gwtkvCpm+L0f6kw92j7EPSg8Ib4AAIA/AACAP2aVn70pLA+6L3OEOEzY8TMyzwy70ZybtwAAgD8AAIA/M8u1uz1KfLkO2te6gKu9tTJ+LrvVNQM6AACAPwAAgD/zP5A9w2F2uirK+rlE49i0XDUVODu3EjkAAIA/AACAPzOzfzvSYNi7jcp5vAakpDx3sys9avCJvQAAgD8AAIA/MwgtPQoXKTj1Pau6JMeptQz8xzl7rs85AACAPwAAgD9mxx29rsWKusFVgDpKlhS2o/SOu1DekrkAAIA/AACAP82fI732xFC6+5HbuvOGSbbHUVc6dAAAOgAAgD8AAIA/7Q4APgsrwD5HZaC9fuvhvob6DT6UiB6+AAAAAAAAAACay/Q8rjuBumrQEjkJE1k0g880O4OjKbgAAIA/AACAP2bumTtcc1+61iTbuvdzYbZsUco6a4z7OQAAgD8AAIA/Zprvu4Qwtz+kBbq+/sjfPtiSzjtnvCQ9AAAAAAAAAABmVG+8wzV1ui6h8LkAhnIzMU0Cuz6hCTkAAIA/AACAP73Cnz62Tu8+qHyZvlCx6L4U3YQ8D18WvgAAAAAAAAAAM8UUPbim57nqjrE7c+yUNPTVt7prKmUzAACAPwAAgD9g0om+6HZTP7KhOL5zywu/12MSv34/yL0AAAAAAAAAAM3Ogjz2TBG6/HEUOFErlTM9HeU7TV4utwAAgD8AAIA/zWDRO64dh7ozatY7Zr1/teZ7uThQZma0AACAPwAAgD9mCo28uHbwuYgdGTbe0xiwcGRQu3YFQ7UAAIA/AACAP2ZnNz1cowu6duXwunPA17VH4YG6G08MOgAAgD8AAIA/zde2PApXMTj4+Yi55Is0tGvOabukn6E4AACAPwAAgD+ARw69XB8vurIphLlPq320fUYsu4OvmTgAAAAAAAAAADP6p70BDq0/1dL0vjpEpL4ns5u9IhxLvgAAAAAAAAAAZmeuvFKg4rlUXS27dKl/N/WPnLqtvNi2AACAPwAAgD8Ncv69zxomPvN3JD6t9Xq+Eu6eOuWU0jwAAAAAAAAAAGZSozzDIXe6rW8wO/p1M7bgIVK7FhpNugAAgD8AAIA/ACbNPArXOzgDXzC4HmrUsitIOLuQU1I3AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiS4BLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV8wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYkuAhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGX9I+wC8vqMAWyUTegDjAF0lEdAqS9DB2wFDHV9lChoBkdAY7auez2OAGgHTegDaAhHQKkvaCUX5311fZQoaAZHQGjZ6VD8cdZoB03oA2gIR0CpL3qbBoEkdX2UKGgGR0BjKz+1jRUnaAdN6ANoCEdAqTCv0qYqonV9lChoBkdAYlN/ZM+NcWgHTegDaAhHQKkw5maH9FZ1fZQoaAZHQGeYMLWqcVhoB03oA2gIR0CpMOcrAgxKdX2UKGgGR0BpPZ4Y77sOaAdN6ANoCEdAqTD2tdRiw3V9lChoBkdAaRryp71Iy2gHTegDaAhHQKkxQHAymAN1fZQoaAZHQGU9P8qFyrBoB03oA2gIR0CpMhpswco6dX2UKGgGR0Bpd2RvFWGRaAdN6ANoCEdAqTMnS2H+InV9lChoBkdAY3z4jbBXS2gHTegDaAhHQKkz22+fywx1fZQoaAZHQGbnSNwR5C5oB03oA2gIR0CpNIqTB68hdX2UKGgGR0BQrQc5sCT2aAdLtWgIR0CpNLJnQID6dX2UKGgGR0BkFI7YChexaAdN6ANoCEdAqTT2b5M10nV9lChoBkdAY1ICf6Ggz2gHTegDaAhHQKk1T557gKp1fZQoaAZHQGMkPGhmGudoB03oA2gIR0CpNWHhKlHjdX2UKGgGR0BmSser+5vtaAdN6ANoCEdAqTWFKCg9NnV9lChoBkdAZRXM9r4332gHTegDaAhHQKk13n7pFCt1fZQoaAZHQGp/RiXpnpVoB03oA2gIR0CpNhN5UtI1dX2UKGgGR0BiIszKs+3ZaAdN6ANoCEdAqTbwyGi5/nV9lChoBkdAZttUhmoR7WgHTegDaAhHQKk3Aecx0uF1fZQoaAZHQGYfD50r9VFoB03oA2gIR0CpNzXiBGx2dX2UKGgGR0BlBhW1c+qzaAdN6ANoCEdAqTjP2bobGXV9lChoBkdAY2Ekj5bhWGgHTegDaAhHQKk56RlpXZJ1fZQoaAZHQHJU0RFqi49oB03VAWgIR0CpOguTRplCdX2UKGgGR0BmNdsnAqNIaAdN6ANoCEdAqTr8qtozvnV9lChoBkdAY2gbIcR15mgHTegDaAhHQKk7QBaLXMB1fZQoaAZHQGKclVtGd7RoB03oA2gIR0CpO0K8lHBldX2UKGgGR0BkJYlD4QBgaAdN6ANoCEdAqTtkpZwGW3V9lChoBkdAZk/ORDCxeWgHTegDaAhHQKk7lhS9/SZ1fZQoaAZHQGIICP6sQupoB03oA2gIR0CpPBe23KB/dX2UKGgGR0Bn3SeAd4mkaAdN6ANoCEdAqTwaCFsYVXV9lChoBkdAcKOoFV1fV2gHTZYBaAhHQKk84yRB/qh1fZQoaAZHQGk5Zid8RcxoB03oA2gIR0CpP/H/tICmdX2UKGgGR0Bi4DFERaouaAdN6ANoCEdAqUBvFirksHV9lChoBkdAYUHdO6/Zd2gHTegDaAhHQKlApvo/zJ91fZQoaAZHQGmf4cebNKRoB03oA2gIR0CpQVoVuaWpdX2UKGgGR0Bn/xLwnYxtaAdN6ANoCEdAqUF6Mo+fRXV9lChoBkdAZndO1OTJQ2gHTegDaAhHQKlBjQCSzPd1fZQoaAZHQGBnVWKdhApoB03oA2gIR0CpQdT850bMdX2UKGgGR0Bm0GOMl1KXaAdN6ANoCEdAqUHWhGpdbHV9lChoBkdAZVwSkj5bhWgHTegDaAhHQKlCB/6wdKd1fZQoaAZHQGWUbOeJ53VoB03oA2gIR0CpQnOSGJvYdX2UKGgGR0BpOvEQ5FPSaAdN6ANoCEdAqULsqnWJ8HV9lChoBkdARAdY+0PYnWgHS5doCEdAqUMfbAUL2HV9lChoBkdAYXINn5BToGgHTegDaAhHQKlDH8+A3DN1fZQoaAZHQGmKPwEyLydoB03oA2gIR0CpQzSBshxHdX2UKGgGR0BkgA/C66J7aAdN6ANoCEdAqUND3Zf2K3V9lChoBkdAai96/IsAemgHTegDaAhHQKlDd4Hooux1fZQoaAZHQGRrx1PnB+FoB03oA2gIR0CpQ/Lq+rU9dX2UKGgGR0Bj5Aq9XcQAaAdN6ANoCEdAqUP0YuTRpnV9lChoBkdAaMDH6MzdlGgHTegDaAhHQKlEBXHR1HR1fZQoaAZHQGNFbiZOSGJoB03oA2gIR0CpRFsRxtHhdX2UKGgGR0BlrSdc0LtvaAdN6ANoCEdAqUSrhaTwD3V9lChoBkdAZ0PenAIppmgHTegDaAhHQKlFHloUSIx1fZQoaAZHQGQiXIU8FINoB03oA2gIR0CpRSLofSx8dX2UKGgGR0BpJ9Y0VJtjaAdN6ANoCEdAqUWGyC4Bm3V9lChoBkdAaLgXrMTviWgHTegDaAhHQKlGrxR2r4p1fZQoaAZHQGE7mJvYODtoB03oA2gIR0CpRr8UVSGbdX2UKGgGR0Bh6Bz3h4t6aAdN6ANoCEdAqUbBvYODrnV9lChoBkdAZTGM5wOvuGgHTegDaAhHQKlHN38n/kx1fZQoaAZHQGHUa6jFhodoB03oA2gIR0CpSC1vddmhdX2UKGgGR0BjwI6r/82raAdN6ANoCEdAqUiUVi4J/3V9lChoBkdAYZSKzAvcrWgHTegDaAhHQKlJrJL/S6V1fZQoaAZHQGcA3wLE1l5oB03oA2gIR0CpSe72lEZ0dX2UKGgGR0BowS/9Hc1waAdN6ANoCEdAqUs+xSpBHHV9lChoBkdAaa931SOzY2gHTegDaAhHQKlLQZof0Vd1fZQoaAZHQGM31TBInShoB03oA2gIR0CpS1G2kSEldX2UKGgGR0BnQYbp/wy7aAdN6ANoCEdAqUvGPJaJRHV9lChoBkdAYeEq3mV7hWgHTegDaAhHQKlL6SAYpDx1fZQoaAZHQGEQgLApKBdoB03oA2gIR0CpTCqhtcfOdX2UKGgGR0BmrOHFglWwaAdN6ANoCEdAqUxdvbXYlXV9lChoBkdAYi+FeOXE62gHTegDaAhHQKlNkSmIj4Z1fZQoaAZHQGYdw/X5FgFoB03oA2gIR0CpTtruhK15dX2UKGgGR0BocrnNgSezaAdN6ANoCEdAqU7tWCEpRXV9lChoBkdAZ3D6nBLwnmgHTegDaAhHQKlPMYG+sYF1fZQoaAZHQGTWlIVdonNoB03oA2gIR0CpT/xqwhW6dX2UKGgGR0BjqBt1p0wKaAdN6ANoCEdAqVBUw5/9YXV9lChoBkdAZcTCojv/i2gHTegDaAhHQKlR6m2LHdZ1fZQoaAZHQGK8rRa5f+loB03oA2gIR0CpUi7ypaRqdX2UKGgGR0BieXWxyGSIaAdN6ANoCEdAqVKLiwSrYHV9lChoBkdAZsuXpnpSrGgHTegDaAhHQKlSjPXTVlR1fZQoaAZHQGYEibDuSfVoB03oA2gIR0CpUsBbwBo3dX2UKGgGR0BweC9i+cpcaAdL0mgIR0CpU4bPY4ACdX2UKGgGR0BqwElC1JDmaAdN6ANoCEdAqVWgjSofjnV9lChoBkdAYHACHymQ82gHTegDaAhHQKlV2sPrfLt1fZQoaAZHQGSCn9Nvfj1oB03oA2gIR0CpVfEP+XJHdX2UKGgGR0BjOF+LFXJYaAdN6ANoCEdAqVcFWbPQfXV9lChoBkdAZH3ky1uzhWgHTegDaAhHQKlXFrxAjY91fZQoaAZHQGir7EP1+RZoB03oA2gIR0CpV0zf779AdX2UKGgGR0BgcqHoHLRsaAdN6ANoCEdAqVlDJOnEVHV9lChoBkdAcp0KiO/+KmgHTYECaAhHQKla6IeHSF51fZQoaAZHQGWnaT4cm0FoB03oA2gIR0CpW9Aow22odX2UKGgGR0BlwNwo9cKPaAdN6ANoCEdAqVvd4oqkM3V9lChoBkdAZ62ZydWhiGgHTegDaAhHQKlb3otcv/R1fZQoaAZHQGqtkEC/47BoB03oA2gIR0CpXNQ9q1w6dX2UKGgGR0Blu40CRwIdaAdN6ANoCEdAqV6hky1uznV9lChoBkdAZq8eJ53Tu2gHTegDaAhHQKlflmf5DZ11fZQoaAZHQGPt61Cw8nxoB03oA2gIR0CpX5gBtDUmdX2UKGgGR0BjUnKZDzAfaAdN6ANoCEdAqV+tFfAsTXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 80, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 128, "n_steps": 4096, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-6.8.0-35-lowlatency-x86_64-with-glibc2.29 # 35.1-Ubuntu SMP PREEMPT_DYNAMIC Thu May 23 14:15:41 UTC 2024", "Python": "3.8.10", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.1", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.1"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7202f3657ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7202f3657f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7202f365c040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7202f365c0d0>", "_build": "<function ActorCriticPolicy._build at 0x7202f365c160>", "forward": "<function ActorCriticPolicy.forward at 0x7202f365c1f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7202f365c280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7202f365c310>", "_predict": "<function ActorCriticPolicy._predict at 0x7202f365c3a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7202f365c430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7202f365c4c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7202f365c550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7202f365b1b0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 10485760, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718207591499397293, "learning_rate": 0.0005, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdRAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAEAAAAAAAAJqeIb7D91o7az6Uu/S4DDnrlBa9ZvEZOgAAgD8AAIA/wyKIPhB7sD525nO9MVNCvghTCj2agcM9AAAAAAAAAABm5H+99lMJOxJTybmyLmc9eitZO0PNvD0AAAAAAAAAADOjGDwffcK50OMbvdrLIz3vmle7haYKvgAAgD8AAIA/AMbzvA7MEj9mfiG9jdJevucycrxCJw+9AAAAAAAAAADA/Ts+cStmu2VvWD1yFS+9bl+kvO2BF74AAIA/AACAP83lzD3hJJy63o4ePBlwATcPiPY5RjfvNQAAgD8AAIA/AH/sPXF9Ljh6g6I694mDNr+HBby0zMS5AACAPwAAgD+A3Em9vXW8PyK5b7419R+97oInvRtQ7r0AAAAAAAAAAGBUhT736ky9cH7XPZYEgjtSmLS+NmA5PAAAgD8AAIA/ABXjvCS78T2SAhk+HDkivsXMRr2gap09AAAAAAAAAAAAVpu8w7UrugQbGrv6exS2FcH0OranMToAAIA/AACAP82u/zxSYKG5kZYnuWSiwbfyM6+5Vt9QOAAAgD8AAIA/sy0RPSnAULpy0rm3DzXPttxvijtln/A2AACAPwAAgD/NUhc9KYAeui60izu0QLc2KGinurl6n7oAAIA/AACAPzPkCL0Uory6aqTqvOGxKb2NmoM8R/8TPgAAgD8AAIA/QD6+PcGQqD0Px0m9n0gzvv+zEDxLhUC9AAAAAAAAAADz900+ISMtPhvFJ77FYRu+rUFFPC/jhL0AAAAAAAAAALOFD70Kfzw6TZDmur6/s7x6DnY7yFaPPAAAAAAAAAAAcujLvi+YBj5w5lq7kM5dvtuhwL2Af4a8AAAAAAAAAADAMtc9j35Sutp5kDzwFN68Zz4huqNWD70AAAAAAAAAAJrFLjwpSEe6VhbLu6UeADcX2aK6AjVttgAAgD8AAIA/vrKdvjks+T4rpGM+rUYQvpXtbD1+JQU9AAAAAAAAAADNRgk8KWAjurTPozsWNfg4DcWJuyb5Q7oAAIA/AACAP7qXOb5sULO7hVDsO8V8ZTltkhk9V51GugAAgD8AAIA/ZiouPBQsn7qf+po7t/gdNx0q1zqgtLG6AACAPwAAgD8m/IE99jQIuko6hLwUNJ+8sIoSur3s0jwAAAAAAAAAAA0CGr6PGzk7HqqUPOwGRr258uO8EF0yPgAAgD8AAAAAwmqnvsrZWL3UhYQ6s6JNORtnkT6xCKC5AACAPwAAAAAarHo9w1Fluq4qibs9Bqc8LnOBOhLiSbsAAIA/AACAP+25YD42kwy8RuAAPI7xi7nWz2+9uAB2ugAAgD8AAIA/ph3gPYXjrLnuCTK75nC3uXxdzTsTiK06AACAPwAAgD8NXP89he3ZOsnyNb3Nbem8w+pKPEWUz70AAAAAAACAP6afh74E+AE/YeAyPkKUGb5keqc8bwDLPQAAAAAAAAAA+2qBvlmo1T4SN749odoGvtN1BjxCpzE6AAAAAAAAAADNRn281yEMu/raIDu5wic7/NVAPIEUGLwAAIA/AACAP803OD3hOra4koorOwF+Ljnqcxc7dFA0OAAAgD8AAIA/WlbvPevPwT8cZzE/EcazPb34BTyy8iE+AAAAAAAAAADmtxM9xkn2PlL63bvVjaa+NuoevWmShzwAAAAAAAAAALMNor2PJk26ZsHjugrHJrbAAY66j0SVNQAAgD8AAIA/JhQTvnGq/z3xvLc9Mu4zvu29HT0L8ZO8AAAAAAAAAACaeUU71zN+uQu7A70PRwq9zbZcOzf+kz0AAAAAAAAAACPIyT4H9aI+SpEivu+l3r0CP2E9owDMvQAAAAAAAAAAwGKQvXHtE7nOCgG59iUkPayTQrrSc4E7AACAPwAAgD9mKkI8j3JgOUIzxztWzS84SIbWuoKRmLoAAIA/AACAP5oFJz3ssbE4lrBcPNEAgTYdaM47O52DNQAAgD8AAIA/MHCBvtsc4bw6q546EpEgOfb7Rj6D+sy5AACAPwAAgD8aDcG9XN8EOSi+j7lPOKw4jR/TOp/smDgAAIA/AACAP2ZDaD1xDS86xpCIPA26oTwvYIe7+yKOvQAAgD8AAIA/mlTEPYVDg7mWpIa7UtyVuZKmrTvHCaQ6AACAPwAAgD+Av7s9+w+rO1MaXr2eXii9b8qCukv7lj0AAAAAAAAAAHM94b10NQI+qJXZPX5hK76IBMQ8qIEfvAAAAAAAAAAAmrWJPIWXljrgCKC7VUxNPaC8pzuOFH68AACAPwAAgD/Np+Y9KTx0umtXkDvNc7k5NnwOu8aOdToAAIA/AACAP82KnD32MH66FI2AunpXs7UnooS78+iWOQAAgD8AAIA/oLdxvsPuZLw2Hjg712YTOVpA0j2DQeu5AACAPwAAgD9m2LC9SOueuhduG72edKG4vWhsOZPZEDgAAIA/AACAP9Y4mj7Lppw+KGRZvnq9Eb50JGe9C/dEvQAAAAAAAAAA5qN/PcMFG7o+4ao8HsQXNgHw/TqKyA81AACAPwAAgD8z/6g9SLGHugMEYzzKhCw8j4Jou1Wb/jwAAIA/AACAP9N2jz6dZKE/VTkGP0Ioj74c1IE+CRgoPgAAAAAAAAAAoJRLPst+YD+6+YA9AVorvmXJxT2ipFS9AAAAAAAAAABtPFU+h/MCvcUl9DzJXpi7iKRovkgBZbwAAIA/AACAPxpV0r0UcJq6cG5eu1NL9LhAvEy7TRhdOAAAgD8AAIA/sgKxvvFaaD/C6Tu+HmXCvufosr7de/s8AAAAAAAAAACakN09H/3DuXayqbrZuA62+45Suwi8xjkAAIA/AACAP8CtkD1xCTw6jX+JvIT7XrZ6Sd26utHVNQAAgD8AAIA/+jxbPhp3eT8SWQg+DjHrvjy34j1QY+48AAAAAAAAAADzh7a9PcYeu/DeFz38NC092FnyOxw/Eb4AAAAAAACAP7Oz6z0pIGa6lacmO2AqILbCiWs6DvxgugAAgD8AAIA/O0S7voJ6q738wiE6J4uXN+LvlD4jq443AACAPwAAgD8NzHM+j2EYvHGBS7s/9xI5R2+Kva7TdjoAAIA/AACAP+W51b4lIoO9X1sNvhd72bx2PJE+q+s6PQAAgD8AAIA/2yHQvo8tVj+JmqK95nhyvmzJjb6+cZS8AAAAAAAAAABjRvm+nVwTvomPlLyWQ1a7qBYVvSrHWLwAAIA/AACAPwDkdrxcz1S4QZSbvA4V8rtXzl46gw/UvAAAAAAAAIA/hvxZPu6b7T3XVyG9Vk3CvQ2yEj1aTKA9AAAAAAAAAABmVbe9Kehtujizgzw6kGm1Z1LUurCDZLQAAIA/AACAP1O+Gb4UiIk7msKkOtzxjbg9ruS8UwV0OQAAgD8AAIA/mkS0vfb0a7oWF5U8RJ9WtuDiLLg1H0C1AACAPwAAgD/6pn8+KQmDP/EZLj9WJ9K+IH2xPc7IKD4AAAAAAAAAAEBshr1cCw26rpg9u55zpDmDAU+7Fb2jOQAAgD8AAIA/Zd2Bvt0ET721jNy9flCFveBEsj5X7T4+AACAPwAAAAAzXro8Nx1SPl2f073u63a+UIPBulZJ5z0AAAAAAAAAAC1mgT5tSQW9ugzoPCzWSbv9jWe+WtAXvAAAgD8AAIA/mtc8vK7N67rqV6k8takIPb2q97vyT+Y9AACAPwAAgD+NgpA9XGtMuigrlrthcGI49VaaOiX/qToAAIA/AACAP9OSlD7Pgh28YumGO7JlxjyAj5u9rOWauwAAgD8AAAAAwI3xPa4nrbiOMaY7vqpMvL9eMbqxQDM9AACAPwAAAADNk1w9Us6gOgAg8TwFaE29q4G9vIHwNz4AAIA/AAAAAI1HDL5xPTO5McG9PJtCw7lA4Cu7LiuzOgAAgD8AAIA/7cEqPnAycD8y9aw9pwCZvpPZxD3cJEc9AAAAAAAAAAAaeX+9j4IpOwOVDz3A8Q69ft2fO9h6W70AAAAAAAAAADPwUT3sica55gscPfnPRb0Sk1E3wqEuvgAAAAAAAIA/0xswPvaZD7yqpQE76UHVuT6beb0yfxS6AACAPwAAgD9AEoa9pMJIu6WjBbzRtM+81Z79u8bPCL4AAIA/AACAPwA0Vr2uG7y6yO7/ulR5vjv5Xmu7eWSkPAAAgD8AAIA/mpglPa5f2TlT7Ae8NLVMPPH5cbwIjTS9AACAPwAAAAAazzO+rDubP5Jza74mirK+lokYvlMSubsAAAAAAAAAALMuWb2ul5e6VY01u7cdpjf/OoI7y7zbOQAAgD8AAIA/AITgPdeLCjp+hkQ7yrKxOYUcw7u1krO8AAAAAAAAAAAA7fS89mBCuu3s7juqC7m8Xu/yOru4cTwAAAAAAAAAAM1oojz2cEe6mi8tuxMt/bX29i074y1lNQAAgD8AAIA/GllhvRRIjLqjl4I7gd3BNkHl2DqooJa6AACAPwAAgD9a78o94SSBuvIJsbvuTIY5fItGO8CY1TgAAIA/AACAP0Zrvj7Ii+s7FAsUu3IPzTc3vg68l7g0OgAAgD8AAIA/ap+MPsDBjz7OuMS7XpkIvlKwzj0OTIg8AAAAAAAAAAAziea9hSObOm37wDuVkra8/j8cvFhDEL0AAAAAAAAAAE3Qdr2ux4w3CcqZO+WI5bbH+T8709LstQAAgD8AAIA/Ju6WPtNDFD9l47u95480vpt4CT2G8Aa9AAAAAAAAAADNcrw89gByuspkgzsif6A4HaMIuwNZHLoAAIA/AACAPwDV5j1S9No6AT42PGQRjbybWl+8CKcOvQAAAAAAAAAA4MwNvn5Cqz0x9gw+7TY9vhii5zziWQ07AAAAAAAAAAAAmgW8SGnWOeLMfjw43QI931e0O9EHIzwAAIA/AACAPzCvyj4M77C9owCPPHLZljx1pFC+nZhsvAAAAAAAAAAADYSbPVxzL7qqC3S452KaNlRrxjrSqYc3AACAPwAAgD9zIY8+uukovQMzPz20oLK7oquRvmyHgrwAAIA/AACAP3OQPD6FUKy7vRn3u/kMFb3rFSS9g9YaPQAAAAAAAAAAZkxBvVzHL7rUICs8OlXgNslbBDuQaNk1AACAPwAAgD9AVo89pHQdOlI8vz3HCRM9u8L4O6NPgzwAAAAAAACAPx1zZr44d5q7+4J7O2yJczkctu48GWxEuQAAgD8AAIA/kBRNvowjlD+MQQ+/5jPpvsp7SL6oaCy+AAAAAAAAAADgrVg+uBrsu8Dlbzt8Yji5FXczve6qzLkAAIA/AACAP020ET32iBe6piaGO1ra2bV13aa7E1qdugAAgD8AAIA/7VJNPkP7Yrz33S88gGR0PESB3b0VUtc6AAAAAAAAAADa3a29H2XSOFo0Mrs4tIQ1vSyTO3399LQAAIA/AACAPzohHL4IMM0+fQJBPl81X75n7oG9jpasvQAAAAAAAAAAZjF+PdetMD4LKkq+73w5vkEnAL6X+p69AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiS4BLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV8wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYkuAhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF+8fWcz68CMAWyUTegDjAF0lEdAqK0ZH/cWTHV9lChoBkdAWoyvZAY51mgHTegDaAhHQKitY0WM0gt1fZQoaAZHQE0mzbeuV5doB03oA2gIR0CormKHGjsVdX2UKGgGR0BaNoZ62OQyaAdN6ANoCEdAqK5mMyad+XV9lChoBkdAYXgi+tbLU2gHTegDaAhHQKiu2Pxx1gZ1fZQoaAZHQFBIOi35N49oB03oA2gIR0CorxuI68xsdX2UKGgGR0BWd2IbfgrIaAdN6ANoCEdAqLBNQ66renV9lChoBkdAYCwmUGFBY2gHTegDaAhHQKiwdDBMzuZ1fZQoaAZHQFXZHymQ8wJoB03oA2gIR0CosRGxMWXUdX2UKGgGR0BY0M10knkUaAdN6ANoCEdAqLFKNZNfxHV9lChoBkdAWI+O+7Dl5mgHTegDaAhHQKixxTTfBN51fZQoaAZHQFmUVe8f3exoB03oA2gIR0CotAPt2LYPdX2UKGgGR0BNWLTx5LRKaAdN6ANoCEdAqLal+d9Uj3V9lChoBkdAYL0zHCGetmgHTegDaAhHQKi3Bu+AVfx1fZQoaAZHQFvAona37UJoB03oA2gIR0CouLBllK9PdX2UKGgGR0BhBWBreqJeaAdN6ANoCEdAqLjfk/8l5XV9lChoBkdAU7EVM23rlmgHTegDaAhHQKi5GlyBCld1fZQoaAZHQEz3GWD6FdtoB03oA2gIR0CouboAfdRBdX2UKGgGR0BTsYXbdrO8aAdN6ANoCEdAqLnXNu+AVnV9lChoBkdAYreWE9Mbm2gHTegDaAhHQKi74lY2bXp1fZQoaAZHQGKDEXDWK/FoB03oA2gIR0CovBx6nivQdX2UKGgGR0BM/fE4vN/waAdN6ANoCEdAqLykbHZK4HV9lChoBkdAVTo+Y+jdpWgHTegDaAhHQKi89+fh/Al1fZQoaAZHQFWJUL2HtWxoB03oA2gIR0CovZzYEnstdX2UKGgGR0BUu21hLGrCaAdN6ANoCEdAqL7MLF4s3HV9lChoBkdAVuL3xnWat2gHTegDaAhHQKi/B24/eLx1fZQoaAZHQFOG43WFvhtoB03oA2gIR0CowFaJQ+EAdX2UKGgGR0BWz8S00FbFaAdN6ANoCEdAqMEUk6cRUXV9lChoBkdAVt91uBMBZWgHTegDaAhHQKjDOqgh8pl1fZQoaAZHQGEAKY7aIvdoB03oA2gIR0Cow1hIvrWzdX2UKGgGR0BbpdeD3/PxaAdN6ANoCEdAqMOQNqgyunV9lChoBkdAW9+DVYp2EGgHTegDaAhHQKjEccUdq+J1fZQoaAZHQFyOPO6d1+1oB03oA2gIR0CoxKz8P4EfdX2UKGgGR0Bhm+Eh7mdRaAdN6ANoCEdAqMTN4keIVXV9lChoBkdAYHGn1nM+vGgHTegDaAhHQKjH5O4XoDB1fZQoaAZHQFCPqc3EQ5FoB03oA2gIR0Cox/1Gsmv4dX2UKGgGR0Ba5uNDMNc4aAdN6ANoCEdAqMoi5oXbd3V9lChoBkdAXzVdMTN+s2gHTegDaAhHQKjKSTM7lq91fZQoaAZHQGA8sXrMTvloB03oA2gIR0CoyoDmKZUldX2UKGgGR0BXkxClabF1aAdN6ANoCEdAqMrUfs/puHV9lChoBkdAWlZMzuWrwWgHTegDaAhHQKjNwvf0mMR1fZQoaAZHQFAGIJJGvwFoB03oA2gIR0Co0SnMdLg5dX2UKGgGR0BjpokeIVM3aAdN6ANoCEdAqNONjI7vHHV9lChoBkdAV2YtXgccVGgHTegDaAhHQKjTqcvugHx1fZQoaAZHQFWuldkauOloB03oA2gIR0Co06tKZlWfdX2UKGgGR0BdEQMH8jzJaAdN6ANoCEdAqNQOI42jwnV9lChoBkdAW49lTWGyomgHTegDaAhHQKjUhksBhhJ1fZQoaAZHQFIpydFvybxoB03oA2gIR0Co1n/029+PdX2UKGgGR0BdcUSVW0Z4aAdN6ANoCEdAqNdX+2mYSnV9lChoBkdAUGEnBtUGV2gHTegDaAhHQKjXbI9TxXp1fZQoaAZHQF6vizcAR05oB03oA2gIR0Co15RCx/utdX2UKGgGR0BZfh0EHMUzaAdN6ANoCEdAqNgzayrxRXV9lChoBkdAWrEGkep4r2gHTegDaAhHQKjYZVH4Glh1fZQoaAZHQFwggmZ3LV5oB03oA2gIR0Co22qFh5PedX2UKGgGR0BfqsPvrnklaAdN6ANoCEdAqNyjWmP5pXV9lChoBkdAXFoxoIv8ImgHTegDaAhHQKjd2INVinZ1fZQoaAZHQFmw3o9s7+1oB03oA2gIR0Co30KFAVwhdX2UKGgGR0BoP4/X5FgEaAdN+QJoCEdAqN/ep0fYBnV9lChoBkdAUcxzq8lHBmgHTegDaAhHQKjf7FirksB1fZQoaAZHQFiUdB0IToNoB03oA2gIR0Co4KNSAH3UdX2UKGgGR0BZqGrKeTV2aAdN6ANoCEdAqOEnq5byH3V9lChoBkdAXtx/G2kSEmgHTegDaAhHQKjhO6tknTl1fZQoaAZHQF5AU9IPK+1oB03oA2gIR0Co4WgkC3gDdX2UKGgGR0BWL/Fm4AjqaAdN6ANoCEdAqOIvkDIRy3V9lChoBkdAX+ktqYZ2p2gHTegDaAhHQKjiWL3K0Up1fZQoaAZHQGPRC4Bmwq1oB03oA2gIR0Co4nN2TxG2dX2UKGgGR0BbfgZKnNxEaAdN6ANoCEdAqOU/4ZdfLXV9lChoBkdAWyUUSIxgzGgHTegDaAhHQKjl3hJAdGR1fZQoaAZHwDSQX9BKL89oB01WAWgIR0Co5k5GKAJ+dX2UKGgGR0BhhzA31jAjaAdN6ANoCEdAqOfyCvovBnV9lChoBkdAVPQOZssQNGgHTegDaAhHQKjopzpX6qN1fZQoaAZHQFjkK9PDYRNoB03oA2gIR0Co6QTFuNxVdX2UKGgGR0BV6QlByCFsaAdN6ANoCEdAqOm1kQPI4nV9lChoBkdAWxBs9B8hLWgHTegDaAhHQKjqVmHxjKB1fZQoaAZHQFi/SntOVPhoB03oA2gIR0Co7LTposZpdX2UKGgGR0BdPNWdVea8aAdN6ANoCEdAqOzVhG6PKnV9lChoBkdAWSlL6DXe32gHTegDaAhHQKjucD+R5kd1fZQoaAZHQF80Ey+HrQhoB03oA2gIR0Co7wCnYQJ5dX2UKGgGR0BZN2XkYGdJaAdN6ANoCEdAqO8i1TisGXV9lChoBkdAXUKCuloDgmgHTegDaAhHQKjv8ksz2vl1fZQoaAZHQFnzJDmbLEFoB03oA2gIR0Co8DkTpPhydX2UKGgGR0BZ4iosI3R5aAdN6ANoCEdAqPBZmukk8nV9lChoBkdAU7SXJHRTj2gHTegDaAhHQKjxF3hXKbN1fZQoaAZHQF6F+cpb2UVoB03oA2gIR0Co8deMhougdX2UKGgGR0BSeMotthuwaAdN6ANoCEdAqPPuKIi1RnV9lChoBkdAXNFydWhh6WgHTegDaAhHQKj1O2l2vB91fZQoaAZHQDYAAksz2vloB00LAWgIR0Co9nXjlxOtdX2UKGgGR0BgpBCD28IzaAdN6ANoCEdAqPev7Lt/nXV9lChoBkdARKGyNXHR1GgHS8FoCEdAqPkBx1gYxnV9lChoBkfAaPBAN5MURGgHTZYCaAhHQKj9MNIbwSd1fZQoaAZHQCdiq+8Gs3hoB009AWgIR0Co/ZAH/tIDdX2UKGgGR0Bg9s/dIoVmaAdN6ANoCEdAqP2xIpYs/nV9lChoBkdAW4nOyE+PimgHTegDaAhHQKj/XXd0q6R1fZQoaAZHQGAS7Rv3rUtoB03oA2gIR0Co/3lcQiA2dX2UKGgGR0BiEpYs/Y8MaAdN6ANoCEdAqQD6TUy57XV9lChoBkdAWZ5iG34KyGgHTegDaAhHQKkCZgQYk3V1fZQoaAZHQFjeDIzWPLhoB03oA2gIR0CpA6xo7FKkdX2UKGgGR0BdbloYekpJaAdN6ANoCEdAqQPVC9h7V3V9lChoBkdAVoB8lXzUZ2gHTegDaAhHQKkFZgiu+yt1fZQoaAZHQGHYkQ5FPSFoB03oA2gIR0CpBe8Bltj1dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 40, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 128, "n_steps": 8192, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/QGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-6.8.0-35-lowlatency-x86_64-with-glibc2.29 # 35.1-Ubuntu SMP PREEMPT_DYNAMIC Thu May 23 14:15:41 UTC 2024", "Python": "3.8.10", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.1", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.1"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5d84c2eaf4e9cfd42c786ae7458b160d109fd09384b22a4d3a7e77bb741b90bf
3
- size 151711
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc7dd996d37df8fee5cc7e566f5c92851f704242c96eb89368f5da44495dc725
3
+ size 151710
ppo-LunarLander-v2/data CHANGED
@@ -26,12 +26,12 @@
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1718203588545161990,
30
- "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdRAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAEAAAAAAAAFpWrr3+G0U/zjKjvQlaAr95GB++JYtIvQAAAAAAAAAAzYe/vI8eAbrSMie5HFMetM/2tbrmm0g4AACAPwAAgD9mie889vg9uj008LqRvvw0peMsu3DjCjoAAIA/AACAP00pTT0USKG6cMHAOhHB6jRxoKk4Q8zcuQAAgD8AAIA/ZqWivK6pprrFw1y6/HBQtYQd7Tk9xX05AACAPwAAgD+gnRO+GJTSPV5A0j5gWJi+nw8LPm+mRj4AAAAAAAAAAPMSkT1IG5+6Sr6AOk9yVTXuRbS6lP+UuQAAgD8AAIA/wNPivTh7Mj+24Dq9aqIkv20Fib4BUwO9AAAAAAAAAABm4vA8j45RuopfhLpDaMq120kROoGUmjkAAIA/AACAP5pe9LwpiCW6YJKZuzfNJLZXxkY7MnOwOgAAgD8AAIA/Go2tPSkQQLp4izK8F0NhNAhkObtVpOCzAACAPwAAAAAAAj68w8EuuvKwCDua18605Pqhuop3w7MAAIA/AACAP82v5Tx7Gom6wXctuj6unraWL1A7fS1FOQAAgD8AAIA/ZgoVvCkodrqvgIU626c+NjRsPrvoozk1AACAPwAAgD+ahTi8uPa1ueqzSLu1zjW3sTOyO1pZajoAAIA/AACAP2aSorzDiVq6HrlwOksFVDXrn826TcCNuQAAgD8AAIA/mj//vC+vGT+G+Kk8QjPwvp/Qkb2NZ1k9AAAAAAAAAAAAdzk94dqIuDTatrvFzK82XxbGunoeJbYAAIA/AACAP+aUsj17yIy6De4/u0Be5DftpPW6rW9XOgAAgD8AAIA/AFClusNdLLo/Di48u8qUtTV4tzuep5G0AACAPwAAgD8AL7M9SFOpumWXtTruXxi3xY6quhREyLkAAIA/AACAPzNXUj32lHG69XLwOuRgpTXkWzk6yjEMugAAgD8AAAAAZg9RPXs2prpW9LS6HQmIuR+/n7l9oNw5AACAPwAAgD9mIqg9KQhUunD4RzsCY+w30bu/OXCCCLoAAIA/AACAP/Oer73XRBy79jcNuqxJ8rsBEmC8473YvAAAAAAAAIA/AIz/O48KXbpDNwe51WjjsmqYe7vfPh04AACAPwAAgD8APLa7uI72uXpgs7qLbfO1dxt8O7sUzzkAAIA/AACAPxqOML1I16a6+PMpO0Jshbbt9446c2R2tQAAgD8AAIA/MyfRPI+CWrhow667JHgJN5sCrTraG4K2AACAPwAAgD8ajyu+MBaXP4KHpb41rAm/Phmavkv6xL0AAAAAAAAAAJqru7x7Tqm602ESuk9tBrXuUbg5ntgnOQAAgD8AAIA/ADu5PfakK7oaVbY5poAANS4lTboDS9C4AACAPwAAgD/a3oe9SEH9uE6lAjs4YAE4W12kOhZ9oLkAAIA/AACAP83Ckz2PtnS61LIPvJ6MebVfrqW6Fu3fNAAAgD8AAIA/TSB5PVxHLrolAJe7TRkANveAMbvIkrE6AACAPwAAgD+aS2K8SPOWuhJOlTpat4Q1u6KSuiy8rLkAAIA/AACAP5oXvDx7mpa63p+Hu4UlmDhsNdS5JSJQOQAAgD8AAIA/AJDQPLge07kyfcS7bXg6OHZQ/jo7Uhi3AACAPwAAgD/NwHK8FKSNurK6GDtzBR80+CyeOZokCjMAAIA/AACAP5o3rTxIk4q6WiajO6vPOTgXUkq7c/pptwAAgD8AAIA/AMglPClga7pd/u63UcgYMvDykLtYMQk3AACAPwAAgD+aWP28j55ZupJgG7rN8aa0Yztfupp5MDkAAIA/AACAP83uqTzDjXG66LJTu4DqmraD3he7HmkMNgAAgD8AAIA/msE5O/aESLqK4oq7m126OP7lsTrn6xY6AACAPwAAgD+AIHY9XINSugJHNDj51akzyu6LOzPvULcAAIA/AACAP2bt8zyPXle6MIN6OuHPz7V5E626dRuRuQAAgD8AAIA/zemdvOxp7LkGvvc599uaM+xh1rol9g+5AACAPwAAgD9mocm89oR+urITcLo1BFq1t6/bun9HjDkAAIA/AACAP41/pD1cDxK6ArErumR90LVAnpk7UelHOQAAgD8AAIA/zUxTOwrXb7k5EUI8cuieNWn/2Dt8aJg0AACAPwAAgD/N1908w8EcunDCQLtDPbQ2RAhYu4qpH7YAAIA/AACAP+a2E732zCe64hqctw+0JbNgkWc5iv61NgAAgD8AAIA/Zi5lO5CjsD/+4uQ990P4vkPWG7t6J947AAAAAAAAAACmbpE9j95SukbR9jhiZcm1EDoDuWmWy7QAAIA/AACAP82qDz32RFi6r36COyOUEDgvIdG6+vyFNgAAgD8AAIA/mm0lvI+OQrr6syc7jlEPNVN4ArohjAY0AACAPwAAgD+mzp49Up/Uu0M8SLx8U4s8WA0nPQDdbL0AAIA/AAAAAE3Jkj0pUFq6OCjhOoKzsTXuXYy5y2sCugAAgD8AAIA/ZuIDvcNpBbqLbmc5YtdlNB9e5DpxaYa4AACAPwAAgD/dZ2q+BKMMP+L+ij4rAQq/Pe7zvaI/QD4AAAAAAAAAAOZ8UL2uVa+6zW9cOSCIODQmDsS4cut7uAAAgD8AAIA/Gv4MvVJ4pTjtzY06/BfyNHYuAzxSe625AACAPwAAgD8zbXW9SFnFOwt9YD4+EhS+a2JXPd5lZ78AAAAAAACAP5pZrDsfrc65alzaOv+YCDaSmKY504D9uQAAgD8AAIA/mvWzu3syjLokzwC8t2+WNzXFRLvzMPu2AACAPwAAgD9NQmG97LHhOK6gdDuGeB80E8HbuhYeFTMAAIA/AACAPzMTWTrhaom6lnXpujxebDUhRyy7UJkEOgAAgD8AAIA/GjCFvSl4MrqO/qS57WM6tUeQjTvWEsQ4AACAPwAAgD8ArzK9rmmtuoC7N7o6BEa18KGfOo4UUjkAAIA/AACAPwCSO709mhS5KGhvOkBpGLVrCFq7YgqMuQAAgD8AAIA/AG2tvBQcgrqau3+5ZFBgtOvjZbuaRpU4AACAPwAAgD8AliA8j5YuukIIAju3gYQ1qUJruUrIGboAAIA/AACAP5pPOrzsAce5ZqvGO6mSIzzO0uQ67aTOOwAAgD8AAIA/TRSnPY++abpF0ey5IF/JtAnmWLsBWAk5AACAPwAAgD/N/Gu8KriyP5CK8b7kZHm+PoIgPJ5HkTwAAAAAAAAAAE0jaz2PAhe6ujQbObrQGjTIlCi7bRY5uAAAgD8AAIA/s7FDPXuekrp/P4C21wrdMazfUTpuL5o1AACAPwAAgD8ADCs8rpGXuv7SBbssuSY1UhKfOnKDlLQAAIA/AACAPzPXsr3DdUe6Is6ROEVj7jOmcSw76uGotwAAgD8AAIA/TY5ivT2KDLlAWnu6joO1tVmw6zqvSpY5AACAPwAAgD8zmwI8riOBuq73zzpGhTc2jITwOisW8bkAAIA/AACAP8BlPb70sos+AiRZPu9Azb6RhBq9uUICPgAAAAAAAAAA5iohPSnAWboaLwa5Jke4s015kDow5Ro4AACAPwAAgD8a0Ro9j2ZPuqvpWzX8qJsvPDndum7tiLQAAIA/AACAP808qTwfxc65UjmCu26ZczifTYY74ooSOgAAgD8AAIA/TYNmPcONJrpmwJg7YjobtjnYHzti5LK6AACAPwAAgD8z22A89qRnujYlhDMEIiYwR2XJuYW7trMAAIA/AACAP2ZvfT1SQP25KfoEOTUZgzTDNUe6SmUcuAAAgD8AAIA/mto4PeyfobubNhs8IyKgPBXyDr1u34o9AACAPwAAgD8zYY88FNKJujhajbv3UBy1YnvwuseZoToAAIA/AACAPwChET1cA1S6t0wPtTuuYLL9TIw7a1M2NAAAgD8AAIA/ZlLhPK6PyjmhD6+7Oo50PPqekLt6aDU4AACAPwAAAABmcIC97LHguX6k0DqaOK41jQPmOs4Y+7kAAIA/AACAPwA4jj1cs0C6ClGAt0S1HLLbV6+6iSSVNgAAgD8AAIA/5rZvvVyjHbpgxrq79T0OOKg+K7m+rgK3AACAPwAAgD8zjSC9FPCkurZvnrtwE0c40hQ/OrRFqTcAAIA/AACAP2YdvTyPMjK6Bg6vOdXVYDYIAwI7VZHLuAAAgD8AAIA/msuxPY/yKbproYO6lNWFNqp3CDsEhZY5AACAPwAAgD+ATms99lhouj8iLjii9PIyVxQmOxlCSrcAAIA/AACAP80RjjxcTxS6ka+cO81zPTj9D5u76rFjuAAAgD8AAIA/AJJGvR/92LkvSqS6HmWeNV+3ozp+HsA5AAAAAAAAgD/Ny6g9gwtkvCpm+L0f6kw92j7EPSg8Ib4AAIA/AACAP2aVn70pLA+6L3OEOEzY8TMyzwy70ZybtwAAgD8AAIA/M8u1uz1KfLkO2te6gKu9tTJ+LrvVNQM6AACAPwAAgD/zP5A9w2F2uirK+rlE49i0XDUVODu3EjkAAIA/AACAPzOzfzvSYNi7jcp5vAakpDx3sys9avCJvQAAgD8AAIA/MwgtPQoXKTj1Pau6JMeptQz8xzl7rs85AACAPwAAgD9mxx29rsWKusFVgDpKlhS2o/SOu1DekrkAAIA/AACAP82fI732xFC6+5HbuvOGSbbHUVc6dAAAOgAAgD8AAIA/7Q4APgsrwD5HZaC9fuvhvob6DT6UiB6+AAAAAAAAAACay/Q8rjuBumrQEjkJE1k0g880O4OjKbgAAIA/AACAP2bumTtcc1+61iTbuvdzYbZsUco6a4z7OQAAgD8AAIA/Zprvu4Qwtz+kBbq+/sjfPtiSzjtnvCQ9AAAAAAAAAABmVG+8wzV1ui6h8LkAhnIzMU0Cuz6hCTkAAIA/AACAP73Cnz62Tu8+qHyZvlCx6L4U3YQ8D18WvgAAAAAAAAAAM8UUPbim57nqjrE7c+yUNPTVt7prKmUzAACAPwAAgD9g0om+6HZTP7KhOL5zywu/12MSv34/yL0AAAAAAAAAAM3Ogjz2TBG6/HEUOFErlTM9HeU7TV4utwAAgD8AAIA/zWDRO64dh7ozatY7Zr1/teZ7uThQZma0AACAPwAAgD9mCo28uHbwuYgdGTbe0xiwcGRQu3YFQ7UAAIA/AACAP2ZnNz1cowu6duXwunPA17VH4YG6G08MOgAAgD8AAIA/zde2PApXMTj4+Yi55Is0tGvOabukn6E4AACAPwAAgD+ARw69XB8vurIphLlPq320fUYsu4OvmTgAAAAAAAAAADP6p70BDq0/1dL0vjpEpL4ns5u9IhxLvgAAAAAAAAAAZmeuvFKg4rlUXS27dKl/N/WPnLqtvNi2AACAPwAAgD8Ncv69zxomPvN3JD6t9Xq+Eu6eOuWU0jwAAAAAAAAAAGZSozzDIXe6rW8wO/p1M7bgIVK7FhpNugAAgD8AAIA/ACbNPArXOzgDXzC4HmrUsitIOLuQU1I3AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiS4BLCIaUjAFDlHSUUpQu"
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -45,13 +45,13 @@
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGX9I+wC8vqMAWyUTegDjAF0lEdAqS9DB2wFDHV9lChoBkdAY7auez2OAGgHTegDaAhHQKkvaCUX5311fZQoaAZHQGjZ6VD8cdZoB03oA2gIR0CpL3qbBoEkdX2UKGgGR0BjKz+1jRUnaAdN6ANoCEdAqTCv0qYqonV9lChoBkdAYlN/ZM+NcWgHTegDaAhHQKkw5maH9FZ1fZQoaAZHQGeYMLWqcVhoB03oA2gIR0CpMOcrAgxKdX2UKGgGR0BpPZ4Y77sOaAdN6ANoCEdAqTD2tdRiw3V9lChoBkdAaRryp71Iy2gHTegDaAhHQKkxQHAymAN1fZQoaAZHQGU9P8qFyrBoB03oA2gIR0CpMhpswco6dX2UKGgGR0Bpd2RvFWGRaAdN6ANoCEdAqTMnS2H+InV9lChoBkdAY3z4jbBXS2gHTegDaAhHQKkz22+fywx1fZQoaAZHQGbnSNwR5C5oB03oA2gIR0CpNIqTB68hdX2UKGgGR0BQrQc5sCT2aAdLtWgIR0CpNLJnQID6dX2UKGgGR0BkFI7YChexaAdN6ANoCEdAqTT2b5M10nV9lChoBkdAY1ICf6Ggz2gHTegDaAhHQKk1T557gKp1fZQoaAZHQGMkPGhmGudoB03oA2gIR0CpNWHhKlHjdX2UKGgGR0BmSser+5vtaAdN6ANoCEdAqTWFKCg9NnV9lChoBkdAZRXM9r4332gHTegDaAhHQKk13n7pFCt1fZQoaAZHQGp/RiXpnpVoB03oA2gIR0CpNhN5UtI1dX2UKGgGR0BiIszKs+3ZaAdN6ANoCEdAqTbwyGi5/nV9lChoBkdAZttUhmoR7WgHTegDaAhHQKk3Aecx0uF1fZQoaAZHQGYfD50r9VFoB03oA2gIR0CpNzXiBGx2dX2UKGgGR0BlBhW1c+qzaAdN6ANoCEdAqTjP2bobGXV9lChoBkdAY2Ekj5bhWGgHTegDaAhHQKk56RlpXZJ1fZQoaAZHQHJU0RFqi49oB03VAWgIR0CpOguTRplCdX2UKGgGR0BmNdsnAqNIaAdN6ANoCEdAqTr8qtozvnV9lChoBkdAY2gbIcR15mgHTegDaAhHQKk7QBaLXMB1fZQoaAZHQGKclVtGd7RoB03oA2gIR0CpO0K8lHBldX2UKGgGR0BkJYlD4QBgaAdN6ANoCEdAqTtkpZwGW3V9lChoBkdAZk/ORDCxeWgHTegDaAhHQKk7lhS9/SZ1fZQoaAZHQGIICP6sQupoB03oA2gIR0CpPBe23KB/dX2UKGgGR0Bn3SeAd4mkaAdN6ANoCEdAqTwaCFsYVXV9lChoBkdAcKOoFV1fV2gHTZYBaAhHQKk84yRB/qh1fZQoaAZHQGk5Zid8RcxoB03oA2gIR0CpP/H/tICmdX2UKGgGR0Bi4DFERaouaAdN6ANoCEdAqUBvFirksHV9lChoBkdAYUHdO6/Zd2gHTegDaAhHQKlApvo/zJ91fZQoaAZHQGmf4cebNKRoB03oA2gIR0CpQVoVuaWpdX2UKGgGR0Bn/xLwnYxtaAdN6ANoCEdAqUF6Mo+fRXV9lChoBkdAZndO1OTJQ2gHTegDaAhHQKlBjQCSzPd1fZQoaAZHQGBnVWKdhApoB03oA2gIR0CpQdT850bMdX2UKGgGR0Bm0GOMl1KXaAdN6ANoCEdAqUHWhGpdbHV9lChoBkdAZVwSkj5bhWgHTegDaAhHQKlCB/6wdKd1fZQoaAZHQGWUbOeJ53VoB03oA2gIR0CpQnOSGJvYdX2UKGgGR0BpOvEQ5FPSaAdN6ANoCEdAqULsqnWJ8HV9lChoBkdARAdY+0PYnWgHS5doCEdAqUMfbAUL2HV9lChoBkdAYXINn5BToGgHTegDaAhHQKlDH8+A3DN1fZQoaAZHQGmKPwEyLydoB03oA2gIR0CpQzSBshxHdX2UKGgGR0BkgA/C66J7aAdN6ANoCEdAqUND3Zf2K3V9lChoBkdAai96/IsAemgHTegDaAhHQKlDd4Hooux1fZQoaAZHQGRrx1PnB+FoB03oA2gIR0CpQ/Lq+rU9dX2UKGgGR0Bj5Aq9XcQAaAdN6ANoCEdAqUP0YuTRpnV9lChoBkdAaMDH6MzdlGgHTegDaAhHQKlEBXHR1HR1fZQoaAZHQGNFbiZOSGJoB03oA2gIR0CpRFsRxtHhdX2UKGgGR0BlrSdc0LtvaAdN6ANoCEdAqUSrhaTwD3V9lChoBkdAZ0PenAIppmgHTegDaAhHQKlFHloUSIx1fZQoaAZHQGQiXIU8FINoB03oA2gIR0CpRSLofSx8dX2UKGgGR0BpJ9Y0VJtjaAdN6ANoCEdAqUWGyC4Bm3V9lChoBkdAaLgXrMTviWgHTegDaAhHQKlGrxR2r4p1fZQoaAZHQGE7mJvYODtoB03oA2gIR0CpRr8UVSGbdX2UKGgGR0Bh6Bz3h4t6aAdN6ANoCEdAqUbBvYODrnV9lChoBkdAZTGM5wOvuGgHTegDaAhHQKlHN38n/kx1fZQoaAZHQGHUa6jFhodoB03oA2gIR0CpSC1vddmhdX2UKGgGR0BjwI6r/82raAdN6ANoCEdAqUiUVi4J/3V9lChoBkdAYZSKzAvcrWgHTegDaAhHQKlJrJL/S6V1fZQoaAZHQGcA3wLE1l5oB03oA2gIR0CpSe72lEZ0dX2UKGgGR0BowS/9Hc1waAdN6ANoCEdAqUs+xSpBHHV9lChoBkdAaa931SOzY2gHTegDaAhHQKlLQZof0Vd1fZQoaAZHQGM31TBInShoB03oA2gIR0CpS1G2kSEldX2UKGgGR0BnQYbp/wy7aAdN6ANoCEdAqUvGPJaJRHV9lChoBkdAYeEq3mV7hWgHTegDaAhHQKlL6SAYpDx1fZQoaAZHQGEQgLApKBdoB03oA2gIR0CpTCqhtcfOdX2UKGgGR0BmrOHFglWwaAdN6ANoCEdAqUxdvbXYlXV9lChoBkdAYi+FeOXE62gHTegDaAhHQKlNkSmIj4Z1fZQoaAZHQGYdw/X5FgFoB03oA2gIR0CpTtruhK15dX2UKGgGR0BocrnNgSezaAdN6ANoCEdAqU7tWCEpRXV9lChoBkdAZ3D6nBLwnmgHTegDaAhHQKlPMYG+sYF1fZQoaAZHQGTWlIVdonNoB03oA2gIR0CpT/xqwhW6dX2UKGgGR0BjqBt1p0wKaAdN6ANoCEdAqVBUw5/9YXV9lChoBkdAZcTCojv/i2gHTegDaAhHQKlR6m2LHdZ1fZQoaAZHQGK8rRa5f+loB03oA2gIR0CpUi7ypaRqdX2UKGgGR0BieXWxyGSIaAdN6ANoCEdAqVKLiwSrYHV9lChoBkdAZsuXpnpSrGgHTegDaAhHQKlSjPXTVlR1fZQoaAZHQGYEibDuSfVoB03oA2gIR0CpUsBbwBo3dX2UKGgGR0BweC9i+cpcaAdL0mgIR0CpU4bPY4ACdX2UKGgGR0BqwElC1JDmaAdN6ANoCEdAqVWgjSofjnV9lChoBkdAYHACHymQ82gHTegDaAhHQKlV2sPrfLt1fZQoaAZHQGSCn9Nvfj1oB03oA2gIR0CpVfEP+XJHdX2UKGgGR0BjOF+LFXJYaAdN6ANoCEdAqVcFWbPQfXV9lChoBkdAZH3ky1uzhWgHTegDaAhHQKlXFrxAjY91fZQoaAZHQGir7EP1+RZoB03oA2gIR0CpV0zf779AdX2UKGgGR0BgcqHoHLRsaAdN6ANoCEdAqVlDJOnEVHV9lChoBkdAcp0KiO/+KmgHTYECaAhHQKla6IeHSF51fZQoaAZHQGWnaT4cm0FoB03oA2gIR0CpW9Aow22odX2UKGgGR0BlwNwo9cKPaAdN6ANoCEdAqVvd4oqkM3V9lChoBkdAZ62ZydWhiGgHTegDaAhHQKlb3otcv/R1fZQoaAZHQGqtkEC/47BoB03oA2gIR0CpXNQ9q1w6dX2UKGgGR0Blu40CRwIdaAdN6ANoCEdAqV6hky1uznV9lChoBkdAZq8eJ53Tu2gHTegDaAhHQKlflmf5DZ11fZQoaAZHQGPt61Cw8nxoB03oA2gIR0CpX5gBtDUmdX2UKGgGR0BjUnKZDzAfaAdN6ANoCEdAqV+tFfAsTXVlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 80,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
@@ -77,8 +77,8 @@
77
  "_np_random": null
78
  },
79
  "n_envs": 128,
80
- "n_steps": 4096,
81
- "gamma": 0.999,
82
  "gae_lambda": 0.98,
83
  "ent_coef": 0.01,
84
  "vf_coef": 0.5,
@@ -94,6 +94,6 @@
94
  "target_kl": null,
95
  "lr_schedule": {
96
  ":type:": "<class 'function'>",
97
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
98
  }
99
  }
 
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1718207591499397293,
30
+ "learning_rate": 0.0005,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdRAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAEAAAAAAAAJqeIb7D91o7az6Uu/S4DDnrlBa9ZvEZOgAAgD8AAIA/wyKIPhB7sD525nO9MVNCvghTCj2agcM9AAAAAAAAAABm5H+99lMJOxJTybmyLmc9eitZO0PNvD0AAAAAAAAAADOjGDwffcK50OMbvdrLIz3vmle7haYKvgAAgD8AAIA/AMbzvA7MEj9mfiG9jdJevucycrxCJw+9AAAAAAAAAADA/Ts+cStmu2VvWD1yFS+9bl+kvO2BF74AAIA/AACAP83lzD3hJJy63o4ePBlwATcPiPY5RjfvNQAAgD8AAIA/AH/sPXF9Ljh6g6I694mDNr+HBby0zMS5AACAPwAAgD+A3Em9vXW8PyK5b7419R+97oInvRtQ7r0AAAAAAAAAAGBUhT736ky9cH7XPZYEgjtSmLS+NmA5PAAAgD8AAIA/ABXjvCS78T2SAhk+HDkivsXMRr2gap09AAAAAAAAAAAAVpu8w7UrugQbGrv6exS2FcH0OranMToAAIA/AACAP82u/zxSYKG5kZYnuWSiwbfyM6+5Vt9QOAAAgD8AAIA/sy0RPSnAULpy0rm3DzXPttxvijtln/A2AACAPwAAgD/NUhc9KYAeui60izu0QLc2KGinurl6n7oAAIA/AACAPzPkCL0Uory6aqTqvOGxKb2NmoM8R/8TPgAAgD8AAIA/QD6+PcGQqD0Px0m9n0gzvv+zEDxLhUC9AAAAAAAAAADz900+ISMtPhvFJ77FYRu+rUFFPC/jhL0AAAAAAAAAALOFD70Kfzw6TZDmur6/s7x6DnY7yFaPPAAAAAAAAAAAcujLvi+YBj5w5lq7kM5dvtuhwL2Af4a8AAAAAAAAAADAMtc9j35Sutp5kDzwFN68Zz4huqNWD70AAAAAAAAAAJrFLjwpSEe6VhbLu6UeADcX2aK6AjVttgAAgD8AAIA/vrKdvjks+T4rpGM+rUYQvpXtbD1+JQU9AAAAAAAAAADNRgk8KWAjurTPozsWNfg4DcWJuyb5Q7oAAIA/AACAP7qXOb5sULO7hVDsO8V8ZTltkhk9V51GugAAgD8AAIA/ZiouPBQsn7qf+po7t/gdNx0q1zqgtLG6AACAPwAAgD8m/IE99jQIuko6hLwUNJ+8sIoSur3s0jwAAAAAAAAAAA0CGr6PGzk7HqqUPOwGRr258uO8EF0yPgAAgD8AAAAAwmqnvsrZWL3UhYQ6s6JNORtnkT6xCKC5AACAPwAAAAAarHo9w1Fluq4qibs9Bqc8LnOBOhLiSbsAAIA/AACAP+25YD42kwy8RuAAPI7xi7nWz2+9uAB2ugAAgD8AAIA/ph3gPYXjrLnuCTK75nC3uXxdzTsTiK06AACAPwAAgD8NXP89he3ZOsnyNb3Nbem8w+pKPEWUz70AAAAAAACAP6afh74E+AE/YeAyPkKUGb5keqc8bwDLPQAAAAAAAAAA+2qBvlmo1T4SN749odoGvtN1BjxCpzE6AAAAAAAAAADNRn281yEMu/raIDu5wic7/NVAPIEUGLwAAIA/AACAP803OD3hOra4koorOwF+Ljnqcxc7dFA0OAAAgD8AAIA/WlbvPevPwT8cZzE/EcazPb34BTyy8iE+AAAAAAAAAADmtxM9xkn2PlL63bvVjaa+NuoevWmShzwAAAAAAAAAALMNor2PJk26ZsHjugrHJrbAAY66j0SVNQAAgD8AAIA/JhQTvnGq/z3xvLc9Mu4zvu29HT0L8ZO8AAAAAAAAAACaeUU71zN+uQu7A70PRwq9zbZcOzf+kz0AAAAAAAAAACPIyT4H9aI+SpEivu+l3r0CP2E9owDMvQAAAAAAAAAAwGKQvXHtE7nOCgG59iUkPayTQrrSc4E7AACAPwAAgD9mKkI8j3JgOUIzxztWzS84SIbWuoKRmLoAAIA/AACAP5oFJz3ssbE4lrBcPNEAgTYdaM47O52DNQAAgD8AAIA/MHCBvtsc4bw6q546EpEgOfb7Rj6D+sy5AACAPwAAgD8aDcG9XN8EOSi+j7lPOKw4jR/TOp/smDgAAIA/AACAP2ZDaD1xDS86xpCIPA26oTwvYIe7+yKOvQAAgD8AAIA/mlTEPYVDg7mWpIa7UtyVuZKmrTvHCaQ6AACAPwAAgD+Av7s9+w+rO1MaXr2eXii9b8qCukv7lj0AAAAAAAAAAHM94b10NQI+qJXZPX5hK76IBMQ8qIEfvAAAAAAAAAAAmrWJPIWXljrgCKC7VUxNPaC8pzuOFH68AACAPwAAgD/Np+Y9KTx0umtXkDvNc7k5NnwOu8aOdToAAIA/AACAP82KnD32MH66FI2AunpXs7UnooS78+iWOQAAgD8AAIA/oLdxvsPuZLw2Hjg712YTOVpA0j2DQeu5AACAPwAAgD9m2LC9SOueuhduG72edKG4vWhsOZPZEDgAAIA/AACAP9Y4mj7Lppw+KGRZvnq9Eb50JGe9C/dEvQAAAAAAAAAA5qN/PcMFG7o+4ao8HsQXNgHw/TqKyA81AACAPwAAgD8z/6g9SLGHugMEYzzKhCw8j4Jou1Wb/jwAAIA/AACAP9N2jz6dZKE/VTkGP0Ioj74c1IE+CRgoPgAAAAAAAAAAoJRLPst+YD+6+YA9AVorvmXJxT2ipFS9AAAAAAAAAABtPFU+h/MCvcUl9DzJXpi7iKRovkgBZbwAAIA/AACAPxpV0r0UcJq6cG5eu1NL9LhAvEy7TRhdOAAAgD8AAIA/sgKxvvFaaD/C6Tu+HmXCvufosr7de/s8AAAAAAAAAACakN09H/3DuXayqbrZuA62+45Suwi8xjkAAIA/AACAP8CtkD1xCTw6jX+JvIT7XrZ6Sd26utHVNQAAgD8AAIA/+jxbPhp3eT8SWQg+DjHrvjy34j1QY+48AAAAAAAAAADzh7a9PcYeu/DeFz38NC092FnyOxw/Eb4AAAAAAACAP7Oz6z0pIGa6lacmO2AqILbCiWs6DvxgugAAgD8AAIA/O0S7voJ6q738wiE6J4uXN+LvlD4jq443AACAPwAAgD8NzHM+j2EYvHGBS7s/9xI5R2+Kva7TdjoAAIA/AACAP+W51b4lIoO9X1sNvhd72bx2PJE+q+s6PQAAgD8AAIA/2yHQvo8tVj+JmqK95nhyvmzJjb6+cZS8AAAAAAAAAABjRvm+nVwTvomPlLyWQ1a7qBYVvSrHWLwAAIA/AACAPwDkdrxcz1S4QZSbvA4V8rtXzl46gw/UvAAAAAAAAIA/hvxZPu6b7T3XVyG9Vk3CvQ2yEj1aTKA9AAAAAAAAAABmVbe9Kehtujizgzw6kGm1Z1LUurCDZLQAAIA/AACAP1O+Gb4UiIk7msKkOtzxjbg9ruS8UwV0OQAAgD8AAIA/mkS0vfb0a7oWF5U8RJ9WtuDiLLg1H0C1AACAPwAAgD/6pn8+KQmDP/EZLj9WJ9K+IH2xPc7IKD4AAAAAAAAAAEBshr1cCw26rpg9u55zpDmDAU+7Fb2jOQAAgD8AAIA/Zd2Bvt0ET721jNy9flCFveBEsj5X7T4+AACAPwAAAAAzXro8Nx1SPl2f073u63a+UIPBulZJ5z0AAAAAAAAAAC1mgT5tSQW9ugzoPCzWSbv9jWe+WtAXvAAAgD8AAIA/mtc8vK7N67rqV6k8takIPb2q97vyT+Y9AACAPwAAgD+NgpA9XGtMuigrlrthcGI49VaaOiX/qToAAIA/AACAP9OSlD7Pgh28YumGO7JlxjyAj5u9rOWauwAAgD8AAAAAwI3xPa4nrbiOMaY7vqpMvL9eMbqxQDM9AACAPwAAAADNk1w9Us6gOgAg8TwFaE29q4G9vIHwNz4AAIA/AAAAAI1HDL5xPTO5McG9PJtCw7lA4Cu7LiuzOgAAgD8AAIA/7cEqPnAycD8y9aw9pwCZvpPZxD3cJEc9AAAAAAAAAAAaeX+9j4IpOwOVDz3A8Q69ft2fO9h6W70AAAAAAAAAADPwUT3sica55gscPfnPRb0Sk1E3wqEuvgAAAAAAAIA/0xswPvaZD7yqpQE76UHVuT6beb0yfxS6AACAPwAAgD9AEoa9pMJIu6WjBbzRtM+81Z79u8bPCL4AAIA/AACAPwA0Vr2uG7y6yO7/ulR5vjv5Xmu7eWSkPAAAgD8AAIA/mpglPa5f2TlT7Ae8NLVMPPH5cbwIjTS9AACAPwAAAAAazzO+rDubP5Jza74mirK+lokYvlMSubsAAAAAAAAAALMuWb2ul5e6VY01u7cdpjf/OoI7y7zbOQAAgD8AAIA/AITgPdeLCjp+hkQ7yrKxOYUcw7u1krO8AAAAAAAAAAAA7fS89mBCuu3s7juqC7m8Xu/yOru4cTwAAAAAAAAAAM1oojz2cEe6mi8tuxMt/bX29i074y1lNQAAgD8AAIA/GllhvRRIjLqjl4I7gd3BNkHl2DqooJa6AACAPwAAgD9a78o94SSBuvIJsbvuTIY5fItGO8CY1TgAAIA/AACAP0Zrvj7Ii+s7FAsUu3IPzTc3vg68l7g0OgAAgD8AAIA/ap+MPsDBjz7OuMS7XpkIvlKwzj0OTIg8AAAAAAAAAAAziea9hSObOm37wDuVkra8/j8cvFhDEL0AAAAAAAAAAE3Qdr2ux4w3CcqZO+WI5bbH+T8709LstQAAgD8AAIA/Ju6WPtNDFD9l47u95480vpt4CT2G8Aa9AAAAAAAAAADNcrw89gByuspkgzsif6A4HaMIuwNZHLoAAIA/AACAPwDV5j1S9No6AT42PGQRjbybWl+8CKcOvQAAAAAAAAAA4MwNvn5Cqz0x9gw+7TY9vhii5zziWQ07AAAAAAAAAAAAmgW8SGnWOeLMfjw43QI931e0O9EHIzwAAIA/AACAPzCvyj4M77C9owCPPHLZljx1pFC+nZhsvAAAAAAAAAAADYSbPVxzL7qqC3S452KaNlRrxjrSqYc3AACAPwAAgD9zIY8+uukovQMzPz20oLK7oquRvmyHgrwAAIA/AACAP3OQPD6FUKy7vRn3u/kMFb3rFSS9g9YaPQAAAAAAAAAAZkxBvVzHL7rUICs8OlXgNslbBDuQaNk1AACAPwAAgD9AVo89pHQdOlI8vz3HCRM9u8L4O6NPgzwAAAAAAACAPx1zZr44d5q7+4J7O2yJczkctu48GWxEuQAAgD8AAIA/kBRNvowjlD+MQQ+/5jPpvsp7SL6oaCy+AAAAAAAAAADgrVg+uBrsu8Dlbzt8Yji5FXczve6qzLkAAIA/AACAP020ET32iBe6piaGO1ra2bV13aa7E1qdugAAgD8AAIA/7VJNPkP7Yrz33S88gGR0PESB3b0VUtc6AAAAAAAAAADa3a29H2XSOFo0Mrs4tIQ1vSyTO3399LQAAIA/AACAPzohHL4IMM0+fQJBPl81X75n7oG9jpasvQAAAAAAAAAAZjF+PdetMD4LKkq+73w5vkEnAL6X+p69AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiS4BLCIaUjAFDlHSUUpQu"
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF+8fWcz68CMAWyUTegDjAF0lEdAqK0ZH/cWTHV9lChoBkdAWoyvZAY51mgHTegDaAhHQKitY0WM0gt1fZQoaAZHQE0mzbeuV5doB03oA2gIR0CormKHGjsVdX2UKGgGR0BaNoZ62OQyaAdN6ANoCEdAqK5mMyad+XV9lChoBkdAYXgi+tbLU2gHTegDaAhHQKiu2Pxx1gZ1fZQoaAZHQFBIOi35N49oB03oA2gIR0CorxuI68xsdX2UKGgGR0BWd2IbfgrIaAdN6ANoCEdAqLBNQ66renV9lChoBkdAYCwmUGFBY2gHTegDaAhHQKiwdDBMzuZ1fZQoaAZHQFXZHymQ8wJoB03oA2gIR0CosRGxMWXUdX2UKGgGR0BY0M10knkUaAdN6ANoCEdAqLFKNZNfxHV9lChoBkdAWI+O+7Dl5mgHTegDaAhHQKixxTTfBN51fZQoaAZHQFmUVe8f3exoB03oA2gIR0CotAPt2LYPdX2UKGgGR0BNWLTx5LRKaAdN6ANoCEdAqLal+d9Uj3V9lChoBkdAYL0zHCGetmgHTegDaAhHQKi3Bu+AVfx1fZQoaAZHQFvAona37UJoB03oA2gIR0CouLBllK9PdX2UKGgGR0BhBWBreqJeaAdN6ANoCEdAqLjfk/8l5XV9lChoBkdAU7EVM23rlmgHTegDaAhHQKi5GlyBCld1fZQoaAZHQEz3GWD6FdtoB03oA2gIR0CouboAfdRBdX2UKGgGR0BTsYXbdrO8aAdN6ANoCEdAqLnXNu+AVnV9lChoBkdAYreWE9Mbm2gHTegDaAhHQKi74lY2bXp1fZQoaAZHQGKDEXDWK/FoB03oA2gIR0CovBx6nivQdX2UKGgGR0BM/fE4vN/waAdN6ANoCEdAqLykbHZK4HV9lChoBkdAVTo+Y+jdpWgHTegDaAhHQKi89+fh/Al1fZQoaAZHQFWJUL2HtWxoB03oA2gIR0CovZzYEnstdX2UKGgGR0BUu21hLGrCaAdN6ANoCEdAqL7MLF4s3HV9lChoBkdAVuL3xnWat2gHTegDaAhHQKi/B24/eLx1fZQoaAZHQFOG43WFvhtoB03oA2gIR0CowFaJQ+EAdX2UKGgGR0BWz8S00FbFaAdN6ANoCEdAqMEUk6cRUXV9lChoBkdAVt91uBMBZWgHTegDaAhHQKjDOqgh8pl1fZQoaAZHQGEAKY7aIvdoB03oA2gIR0Cow1hIvrWzdX2UKGgGR0BbpdeD3/PxaAdN6ANoCEdAqMOQNqgyunV9lChoBkdAW9+DVYp2EGgHTegDaAhHQKjEccUdq+J1fZQoaAZHQFyOPO6d1+1oB03oA2gIR0CoxKz8P4EfdX2UKGgGR0Bhm+Eh7mdRaAdN6ANoCEdAqMTN4keIVXV9lChoBkdAYHGn1nM+vGgHTegDaAhHQKjH5O4XoDB1fZQoaAZHQFCPqc3EQ5FoB03oA2gIR0Cox/1Gsmv4dX2UKGgGR0Ba5uNDMNc4aAdN6ANoCEdAqMoi5oXbd3V9lChoBkdAXzVdMTN+s2gHTegDaAhHQKjKSTM7lq91fZQoaAZHQGA8sXrMTvloB03oA2gIR0CoyoDmKZUldX2UKGgGR0BXkxClabF1aAdN6ANoCEdAqMrUfs/puHV9lChoBkdAWlZMzuWrwWgHTegDaAhHQKjNwvf0mMR1fZQoaAZHQFAGIJJGvwFoB03oA2gIR0Co0SnMdLg5dX2UKGgGR0BjpokeIVM3aAdN6ANoCEdAqNONjI7vHHV9lChoBkdAV2YtXgccVGgHTegDaAhHQKjTqcvugHx1fZQoaAZHQFWuldkauOloB03oA2gIR0Co06tKZlWfdX2UKGgGR0BdEQMH8jzJaAdN6ANoCEdAqNQOI42jwnV9lChoBkdAW49lTWGyomgHTegDaAhHQKjUhksBhhJ1fZQoaAZHQFIpydFvybxoB03oA2gIR0Co1n/029+PdX2UKGgGR0BdcUSVW0Z4aAdN6ANoCEdAqNdX+2mYSnV9lChoBkdAUGEnBtUGV2gHTegDaAhHQKjXbI9TxXp1fZQoaAZHQF6vizcAR05oB03oA2gIR0Co15RCx/utdX2UKGgGR0BZfh0EHMUzaAdN6ANoCEdAqNgzayrxRXV9lChoBkdAWrEGkep4r2gHTegDaAhHQKjYZVH4Glh1fZQoaAZHQFwggmZ3LV5oB03oA2gIR0Co22qFh5PedX2UKGgGR0BfqsPvrnklaAdN6ANoCEdAqNyjWmP5pXV9lChoBkdAXFoxoIv8ImgHTegDaAhHQKjd2INVinZ1fZQoaAZHQFmw3o9s7+1oB03oA2gIR0Co30KFAVwhdX2UKGgGR0BoP4/X5FgEaAdN+QJoCEdAqN/ep0fYBnV9lChoBkdAUcxzq8lHBmgHTegDaAhHQKjf7FirksB1fZQoaAZHQFiUdB0IToNoB03oA2gIR0Co4KNSAH3UdX2UKGgGR0BZqGrKeTV2aAdN6ANoCEdAqOEnq5byH3V9lChoBkdAXtx/G2kSEmgHTegDaAhHQKjhO6tknTl1fZQoaAZHQF5AU9IPK+1oB03oA2gIR0Co4WgkC3gDdX2UKGgGR0BWL/Fm4AjqaAdN6ANoCEdAqOIvkDIRy3V9lChoBkdAX+ktqYZ2p2gHTegDaAhHQKjiWL3K0Up1fZQoaAZHQGPRC4Bmwq1oB03oA2gIR0Co4nN2TxG2dX2UKGgGR0BbfgZKnNxEaAdN6ANoCEdAqOU/4ZdfLXV9lChoBkdAWyUUSIxgzGgHTegDaAhHQKjl3hJAdGR1fZQoaAZHwDSQX9BKL89oB01WAWgIR0Co5k5GKAJ+dX2UKGgGR0BhhzA31jAjaAdN6ANoCEdAqOfyCvovBnV9lChoBkdAVPQOZssQNGgHTegDaAhHQKjopzpX6qN1fZQoaAZHQFjkK9PDYRNoB03oA2gIR0Co6QTFuNxVdX2UKGgGR0BV6QlByCFsaAdN6ANoCEdAqOm1kQPI4nV9lChoBkdAWxBs9B8hLWgHTegDaAhHQKjqVmHxjKB1fZQoaAZHQFi/SntOVPhoB03oA2gIR0Co7LTposZpdX2UKGgGR0BdPNWdVea8aAdN6ANoCEdAqOzVhG6PKnV9lChoBkdAWSlL6DXe32gHTegDaAhHQKjucD+R5kd1fZQoaAZHQF80Ey+HrQhoB03oA2gIR0Co7wCnYQJ5dX2UKGgGR0BZN2XkYGdJaAdN6ANoCEdAqO8i1TisGXV9lChoBkdAXUKCuloDgmgHTegDaAhHQKjv8ksz2vl1fZQoaAZHQFnzJDmbLEFoB03oA2gIR0Co8DkTpPhydX2UKGgGR0BZ4iosI3R5aAdN6ANoCEdAqPBZmukk8nV9lChoBkdAU7SXJHRTj2gHTegDaAhHQKjxF3hXKbN1fZQoaAZHQF6F+cpb2UVoB03oA2gIR0Co8deMhougdX2UKGgGR0BSeMotthuwaAdN6ANoCEdAqPPuKIi1RnV9lChoBkdAXNFydWhh6WgHTegDaAhHQKj1O2l2vB91fZQoaAZHQDYAAksz2vloB00LAWgIR0Co9nXjlxOtdX2UKGgGR0BgpBCD28IzaAdN6ANoCEdAqPev7Lt/nXV9lChoBkdARKGyNXHR1GgHS8FoCEdAqPkBx1gYxnV9lChoBkfAaPBAN5MURGgHTZYCaAhHQKj9MNIbwSd1fZQoaAZHQCdiq+8Gs3hoB009AWgIR0Co/ZAH/tIDdX2UKGgGR0Bg9s/dIoVmaAdN6ANoCEdAqP2xIpYs/nV9lChoBkdAW4nOyE+PimgHTegDaAhHQKj/XXd0q6R1fZQoaAZHQGAS7Rv3rUtoB03oA2gIR0Co/3lcQiA2dX2UKGgGR0BiEpYs/Y8MaAdN6ANoCEdAqQD6TUy57XV9lChoBkdAWZ5iG34KyGgHTegDaAhHQKkCZgQYk3V1fZQoaAZHQFjeDIzWPLhoB03oA2gIR0CpA6xo7FKkdX2UKGgGR0BdbloYekpJaAdN6ANoCEdAqQPVC9h7V3V9lChoBkdAVoB8lXzUZ2gHTegDaAhHQKkFZgiu+yt1fZQoaAZHQGHYkQ5FPSFoB03oA2gIR0CpBe8Bltj1dWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 40,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
77
  "_np_random": null
78
  },
79
  "n_envs": 128,
80
+ "n_steps": 8192,
81
+ "gamma": 0.99,
82
  "gae_lambda": 0.98,
83
  "ent_coef": 0.01,
84
  "vf_coef": 0.5,
 
94
  "target_kl": null,
95
  "lr_schedule": {
96
  ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/QGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
98
  }
99
  }
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:67166ef6231dbded00b97c31afc98bdd8f6d16eecbf6bae1d061be80a932c4fa
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6dad7e18ee64242c83e51eea07351970bdfc6f13ec4e9d122c92b46f400cd82
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:700787db0740695f39d5b103aecd53658fa7f4beb44659b1b97b7ab2e0cd9f45
3
  size 43329
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d37a22e7f0a83604a1fc115da94ccdbcf689d29f3cbc342e9ba03b198fb4c9e
3
  size 43329
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 265.3534486, "std_reward": 14.825018206676216, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-12T15:42:08.321596"}
 
1
+ {"mean_reward": 222.31539170000002, "std_reward": 18.9212491095876, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-12T16:47:09.504217"}