-
Robust Mixture-of-Expert Training for Convolutional Neural Networks
Paper • 2308.10110 • Published • 2 -
Experts Weights Averaging: A New General Training Scheme for Vision Transformers
Paper • 2308.06093 • Published • 2 -
ConstitutionalExperts: Training a Mixture of Principle-based Prompts
Paper • 2403.04894 • Published • 2 -
Mixture-of-LoRAs: An Efficient Multitask Tuning for Large Language Models
Paper • 2403.03432 • Published • 1
Collections
Discover the best community collections!
Collections including paper arxiv:2312.17238
-
AnimateLCM: Accelerating the Animation of Personalized Diffusion Models and Adapters with Decoupled Consistency Learning
Paper • 2402.00769 • Published • 22 -
LCM-LoRA: A Universal Stable-Diffusion Acceleration Module
Paper • 2311.05556 • Published • 82 -
LongAlign: A Recipe for Long Context Alignment of Large Language Models
Paper • 2401.18058 • Published • 20 -
Efficient Tool Use with Chain-of-Abstraction Reasoning
Paper • 2401.17464 • Published • 16
-
Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer
Paper • 1701.06538 • Published • 5 -
Sparse Networks from Scratch: Faster Training without Losing Performance
Paper • 1907.04840 • Published • 3 -
ZeRO: Memory Optimizations Toward Training Trillion Parameter Models
Paper • 1910.02054 • Published • 4 -
A Mixture of h-1 Heads is Better than h Heads
Paper • 2005.06537 • Published • 2
-
Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer
Paper • 1701.06538 • Published • 5 -
Sparse Networks from Scratch: Faster Training without Losing Performance
Paper • 1907.04840 • Published • 3 -
ZeRO: Memory Optimizations Toward Training Trillion Parameter Models
Paper • 1910.02054 • Published • 4 -
A Mixture of h-1 Heads is Better than h Heads
Paper • 2005.06537 • Published • 2
-
S^{3}: Increasing GPU Utilization during Generative Inference for Higher Throughput
Paper • 2306.06000 • Published • 1 -
Fast Distributed Inference Serving for Large Language Models
Paper • 2305.05920 • Published • 1 -
Response Length Perception and Sequence Scheduling: An LLM-Empowered LLM Inference Pipeline
Paper • 2305.13144 • Published • 1 -
Towards MoE Deployment: Mitigating Inefficiencies in Mixture-of-Expert (MoE) Inference
Paper • 2303.06182 • Published • 1
-
QMoE: Practical Sub-1-Bit Compression of Trillion-Parameter Models
Paper • 2310.16795 • Published • 26 -
Pre-gated MoE: An Algorithm-System Co-Design for Fast and Scalable Mixture-of-Expert Inference
Paper • 2308.12066 • Published • 4 -
Towards MoE Deployment: Mitigating Inefficiencies in Mixture-of-Expert (MoE) Inference
Paper • 2303.06182 • Published • 1 -
EvoMoE: An Evolutional Mixture-of-Experts Training Framework via Dense-To-Sparse Gate
Paper • 2112.14397 • Published • 1