-
EVA-CLIP-18B: Scaling CLIP to 18 Billion Parameters
Paper • 2402.04252 • Published • 25 -
Vision Superalignment: Weak-to-Strong Generalization for Vision Foundation Models
Paper • 2402.03749 • Published • 12 -
ScreenAI: A Vision-Language Model for UI and Infographics Understanding
Paper • 2402.04615 • Published • 39 -
EfficientViT-SAM: Accelerated Segment Anything Model Without Performance Loss
Paper • 2402.05008 • Published • 20
Collections
Discover the best community collections!
Collections including paper arxiv:2411.19930
-
DocLLM: A layout-aware generative language model for multimodal document understanding
Paper • 2401.00908 • Published • 181 -
COSMO: COntrastive Streamlined MultimOdal Model with Interleaved Pre-Training
Paper • 2401.00849 • Published • 15 -
LLaVA-Plus: Learning to Use Tools for Creating Multimodal Agents
Paper • 2311.05437 • Published • 48 -
LLaVA-Interactive: An All-in-One Demo for Image Chat, Segmentation, Generation and Editing
Paper • 2311.00571 • Published • 41
-
PUMA: Empowering Unified MLLM with Multi-granular Visual Generation
Paper • 2410.13861 • Published • 52 -
JanusFlow: Harmonizing Autoregression and Rectified Flow for Unified Multimodal Understanding and Generation
Paper • 2411.07975 • Published • 27 -
Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization
Paper • 2411.10442 • Published • 68 -
Multimodal Autoregressive Pre-training of Large Vision Encoders
Paper • 2411.14402 • Published • 43
-
Rethinking Data Selection at Scale: Random Selection is Almost All You Need
Paper • 2410.09335 • Published • 16 -
From Generalist to Specialist: Adapting Vision Language Models via Task-Specific Visual Instruction Tuning
Paper • 2410.06456 • Published • 35 -
Emergent properties with repeated examples
Paper • 2410.07041 • Published • 8 -
Personalized Visual Instruction Tuning
Paper • 2410.07113 • Published • 69
-
Revisit Large-Scale Image-Caption Data in Pre-training Multimodal Foundation Models
Paper • 2410.02740 • Published • 52 -
From Code to Correctness: Closing the Last Mile of Code Generation with Hierarchical Debugging
Paper • 2410.01215 • Published • 30 -
Molmo and PixMo: Open Weights and Open Data for State-of-the-Art Multimodal Models
Paper • 2409.17146 • Published • 104 -
EuroLLM: Multilingual Language Models for Europe
Paper • 2409.16235 • Published • 25
-
iVideoGPT: Interactive VideoGPTs are Scalable World Models
Paper • 2405.15223 • Published • 12 -
Meteor: Mamba-based Traversal of Rationale for Large Language and Vision Models
Paper • 2405.15574 • Published • 53 -
An Introduction to Vision-Language Modeling
Paper • 2405.17247 • Published • 87 -
Matryoshka Multimodal Models
Paper • 2405.17430 • Published • 31