File size: 10,995 Bytes
1ece944 c183b40 1ece944 c183b40 1ece944 c183b40 5073ab5 c183b40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
---
tags:
- pyannote
- pyannote-audio
- pyannote-audio-pipeline
- audio
- voice
- speech
- speaker
- speaker-diarization
- speaker-change-detection
- voice-activity-detection
- overlapped-speech-detection
- automatic-speech-recognition
license: mit
extra_gated_prompt: "The collected information will help acquire a better knowledge of pyannote.audio userbase and help its maintainers improve it further. Though this pipeline uses MIT license and will always remain open-source, we will occasionnally email you about premium pipelines and paid services around pyannote."
extra_gated_fields:
Company/university: text
Website: text
---
Using this open-source pipeline in production?
Make the most of it thanks to our [consulting services](https://herve.niderb.fr/consulting.html).
# 🎹 Speaker diarization 3.1
This pipeline is the same as [`pyannote/speaker-diarization-3.0`](https://hf.co/pyannote/speaker-diarization-3.1) except it removes the [problematic](https://github.com/pyannote/pyannote-audio/issues/1537) use of `onnxruntime`.
Both speaker segmentation and embedding now run in pure PyTorch. This should ease deployment and possibly speed up inference.
It requires pyannote.audio version 3.1 or higher.
It ingests mono audio sampled at 16kHz and outputs speaker diarization as an [`Annotation`](http://pyannote.github.io/pyannote-core/structure.html#annotation) instance:
- stereo or multi-channel audio files are automatically downmixed to mono by averaging the channels.
- audio files sampled at a different rate are resampled to 16kHz automatically upon loading.
## Requirements
1. Install [`pyannote.audio`](https://github.com/pyannote/pyannote-audio) `3.1` with `pip install pyannote.audio`
2. Accept [`pyannote/segmentation-3.0`](https://hf.co/pyannote/segmentation-3.0) user conditions
3. Accept [`pyannote/speaker-diarization-3.1`](https://hf.co/pyannote-speaker-diarization-3.1) user conditions
4. Create access token at [`hf.co/settings/tokens`](https://hf.co/settings/tokens).
## Usage
```python
# instantiate the pipeline
from pyannote.audio import Pipeline
pipeline = Pipeline.from_pretrained(
"pyannote/speaker-diarization-3.1",
use_auth_token="HUGGINGFACE_ACCESS_TOKEN_GOES_HERE")
# run the pipeline on an audio file
diarization = pipeline("audio.wav")
# dump the diarization output to disk using RTTM format
with open("audio.rttm", "w") as rttm:
diarization.write_rttm(rttm)
```
### Processing on GPU
`pyannote.audio` pipelines run on CPU by default.
You can send them to GPU with the following lines:
```python
import torch
pipeline.to(torch.device("cuda"))
```
### Processing from memory
Pre-loading audio files in memory may result in faster processing:
```python
waveform, sample_rate = torchaudio.load("audio.wav")
diarization = pipeline({"waveform": waveform, "sample_rate": sample_rate})
```
### Monitoring progress
Hooks are available to monitor the progress of the pipeline:
```python
from pyannote.audio.pipelines.utils.hook import ProgressHook
with ProgressHook() as hook:
diarization = pipeline("audio.wav", hook=hook)
```
### Controlling the number of speakers
In case the number of speakers is known in advance, one can use the `num_speakers` option:
```python
diarization = pipeline("audio.wav", num_speakers=2)
```
One can also provide lower and/or upper bounds on the number of speakers using `min_speakers` and `max_speakers` options:
```python
diarization = pipeline("audio.wav", min_speakers=2, max_speakers=5)
```
## Benchmark
This pipeline has been benchmarked on a large collection of datasets.
Processing is fully automatic:
- no manual voice activity detection (as is sometimes the case in the literature)
- no manual number of speakers (though it is possible to provide it to the pipeline)
- no fine-tuning of the internal models nor tuning of the pipeline hyper-parameters to each dataset
... with the least forgiving diarization error rate (DER) setup (named _"Full"_ in [this paper](https://doi.org/10.1016/j.csl.2021.101254)):
- no forgiveness collar
- evaluation of overlapped speech
| Benchmark | [DER%](. "Diarization error rate") | [FA%](. "False alarm rate") | [Miss%](. "Missed detection rate") | [Conf%](. "Speaker confusion rate") | Expected output | File-level evaluation |
| ------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------- | --------------------------- | ---------------------------------- | ----------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------- |
| [AISHELL-4](http://www.openslr.org/111/) | 12.2 | 3.8 | 4.4 | 4.0 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AISHELL.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AISHELL.SpeakerDiarization.Benchmark.test.eval) |
| [AliMeeting (_channel 1_)](https://www.openslr.org/119/) | 24.4 | 4.4 | 10.0 | 10.0 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AliMeeting.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AliMeeting.SpeakerDiarization.Benchmark.test.eval) |
| [AMI (_headset mix,_](https://groups.inf.ed.ac.uk/ami/corpus/) [_only_words_)](https://github.com/BUTSpeechFIT/AMI-diarization-setup) | 18.8 | 3.6 | 9.5 | 5.7 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AMI.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AMI.SpeakerDiarization.Benchmark.test.eval) |
| [AMI (_array1, channel 1,_](https://groups.inf.ed.ac.uk/ami/corpus/) [_only_words)_](https://github.com/BUTSpeechFIT/AMI-diarization-setup) | 22.4 | 3.8 | 11.2 | 7.5 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AMI-SDM.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AMI-SDM.SpeakerDiarization.Benchmark.test.eval) |
| [AVA-AVD](https://arxiv.org/abs/2111.14448) | 50.0 | 10.8 | 15.7 | 23.4 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AVA-AVD.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/AVA-AVD.SpeakerDiarization.Benchmark.test.eval) |
| [DIHARD 3 (_Full_)](https://arxiv.org/abs/2012.01477) | 21.7 | 6.2 | 8.1 | 7.3 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/DIHARD.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/DIHARD.SpeakerDiarization.Benchmark.test.eval) |
| [MSDWild](https://x-lance.github.io/MSDWILD/) | 25.3 | 5.8 | 8.0 | 11.5 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/MSDWILD.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/MSDWILD.SpeakerDiarization.Benchmark.test.eval) |
| [REPERE (_phase 2_)](https://islrn.org/resources/360-758-359-485-0/) | 7.8 | 1.8 | 2.6 | 3.5 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/REPERE.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/REPERE.SpeakerDiarization.Benchmark.test.eval) |
| [VoxConverse (_v0.3_)](https://github.com/joonson/voxconverse) | 11.3 | 4.1 | 3.4 | 3.8 | [RTTM](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/VoxConverse.SpeakerDiarization.Benchmark.test.rttm) | [eval](https://huggingface.co/pyannote/speaker-diarization-3.1/blob/main/reproducible_research/VoxConverse.SpeakerDiarization.Benchmark.test.eval) |
## Citations
```bibtex
@inproceedings{Plaquet23,
author={Alexis Plaquet and Hervé Bredin},
title={{Powerset multi-class cross entropy loss for neural speaker diarization}},
year=2023,
booktitle={Proc. INTERSPEECH 2023},
}
```
```bibtex
@inproceedings{Bredin23,
author={Hervé Bredin},
title={{pyannote.audio 2.1 speaker diarization pipeline: principle, benchmark, and recipe}},
year=2023,
booktitle={Proc. INTERSPEECH 2023},
}
```
|