File size: 5,594 Bytes
908a1ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import torch
from collections import OrderedDict

from basicsr.archs import build_network
from basicsr.losses import build_loss
from basicsr.utils import get_root_logger
from basicsr.utils.registry import MODEL_REGISTRY
from .sr_model import SRModel


@MODEL_REGISTRY.register()
class SRGANModel(SRModel):
    """SRGAN model for single image super-resolution."""

    def init_training_settings(self):
        train_opt = self.opt['train']

        self.ema_decay = train_opt.get('ema_decay', 0)
        if self.ema_decay > 0:
            logger = get_root_logger()
            logger.info(f'Use Exponential Moving Average with decay: {self.ema_decay}')
            # define network net_g with Exponential Moving Average (EMA)
            # net_g_ema is used only for testing on one GPU and saving
            # There is no need to wrap with DistributedDataParallel
            self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
            # load pretrained model
            load_path = self.opt['path'].get('pretrain_network_g', None)
            if load_path is not None:
                self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
            else:
                self.model_ema(0)  # copy net_g weight
            self.net_g_ema.eval()

        # define network net_d
        self.net_d = build_network(self.opt['network_d'])
        self.net_d = self.model_to_device(self.net_d)
        self.print_network(self.net_d)

        # load pretrained models
        load_path = self.opt['path'].get('pretrain_network_d', None)
        if load_path is not None:
            self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True))

        self.net_g.train()
        self.net_d.train()

        # define losses
        if train_opt.get('pixel_opt'):
            self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device)
        else:
            self.cri_pix = None

        if train_opt.get('perceptual_opt'):
            self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device)
        else:
            self.cri_perceptual = None

        if train_opt.get('gan_opt'):
            self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device)

        self.net_d_iters = train_opt.get('net_d_iters', 1)
        self.net_d_init_iters = train_opt.get('net_d_init_iters', 0)

        # set up optimizers and schedulers
        self.setup_optimizers()
        self.setup_schedulers()

    def setup_optimizers(self):
        train_opt = self.opt['train']
        # optimizer g
        optim_type = train_opt['optim_g'].pop('type')
        self.optimizer_g = self.get_optimizer(optim_type, self.net_g.parameters(), **train_opt['optim_g'])
        self.optimizers.append(self.optimizer_g)
        # optimizer d
        optim_type = train_opt['optim_d'].pop('type')
        self.optimizer_d = self.get_optimizer(optim_type, self.net_d.parameters(), **train_opt['optim_d'])
        self.optimizers.append(self.optimizer_d)

    def optimize_parameters(self, current_iter):
        # optimize net_g
        for p in self.net_d.parameters():
            p.requires_grad = False

        self.optimizer_g.zero_grad()
        self.output = self.net_g(self.lq)

        l_g_total = 0
        loss_dict = OrderedDict()
        if (current_iter % self.net_d_iters == 0 and current_iter > self.net_d_init_iters):
            # pixel loss
            if self.cri_pix:
                l_g_pix = self.cri_pix(self.output, self.gt)
                l_g_total += l_g_pix
                loss_dict['l_g_pix'] = l_g_pix
            # perceptual loss
            if self.cri_perceptual:
                l_g_percep, l_g_style = self.cri_perceptual(self.output, self.gt)
                if l_g_percep is not None:
                    l_g_total += l_g_percep
                    loss_dict['l_g_percep'] = l_g_percep
                if l_g_style is not None:
                    l_g_total += l_g_style
                    loss_dict['l_g_style'] = l_g_style
            # gan loss
            fake_g_pred = self.net_d(self.output)
            l_g_gan = self.cri_gan(fake_g_pred, True, is_disc=False)
            l_g_total += l_g_gan
            loss_dict['l_g_gan'] = l_g_gan

            l_g_total.backward()
            self.optimizer_g.step()

        # optimize net_d
        for p in self.net_d.parameters():
            p.requires_grad = True

        self.optimizer_d.zero_grad()
        # real
        real_d_pred = self.net_d(self.gt)
        l_d_real = self.cri_gan(real_d_pred, True, is_disc=True)
        loss_dict['l_d_real'] = l_d_real
        loss_dict['out_d_real'] = torch.mean(real_d_pred.detach())
        l_d_real.backward()
        # fake
        fake_d_pred = self.net_d(self.output.detach())
        l_d_fake = self.cri_gan(fake_d_pred, False, is_disc=True)
        loss_dict['l_d_fake'] = l_d_fake
        loss_dict['out_d_fake'] = torch.mean(fake_d_pred.detach())
        l_d_fake.backward()
        self.optimizer_d.step()

        self.log_dict = self.reduce_loss_dict(loss_dict)

        if self.ema_decay > 0:
            self.model_ema(decay=self.ema_decay)

    def save(self, epoch, current_iter):
        if hasattr(self, 'net_g_ema'):
            self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
        else:
            self.save_network(self.net_g, 'net_g', current_iter)
        self.save_network(self.net_d, 'net_d', current_iter)
        self.save_training_state(epoch, current_iter)