File size: 4,565 Bytes
908a1ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import random
import torch
from pathlib import Path
from torch.utils import data as data

from basicsr.data.transforms import augment, paired_random_crop
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
from basicsr.utils.registry import DATASET_REGISTRY


@DATASET_REGISTRY.register()
class Vimeo90KDataset(data.Dataset):
    """Vimeo90K dataset for training.

    The keys are generated from a meta info txt file.
    basicsr/data/meta_info/meta_info_Vimeo90K_train_GT.txt

    Each line contains:
    1. clip name; 2. frame number; 3. image shape, seperated by a white space.
    Examples:
        00001/0001 7 (256,448,3)
        00001/0002 7 (256,448,3)

    Key examples: "00001/0001"
    GT (gt): Ground-Truth;
    LQ (lq): Low-Quality, e.g., low-resolution/blurry/noisy/compressed frames.

    The neighboring frame list for different num_frame:
    num_frame | frame list
             1 | 4
             3 | 3,4,5
             5 | 2,3,4,5,6
             7 | 1,2,3,4,5,6,7

    Args:
        opt (dict): Config for train dataset. It contains the following keys:
            dataroot_gt (str): Data root path for gt.
            dataroot_lq (str): Data root path for lq.
            meta_info_file (str): Path for meta information file.
            io_backend (dict): IO backend type and other kwarg.

            num_frame (int): Window size for input frames.
            gt_size (int): Cropped patched size for gt patches.
            random_reverse (bool): Random reverse input frames.
            use_flip (bool): Use horizontal flips.
            use_rot (bool): Use rotation (use vertical flip and transposing h
                and w for implementation).

            scale (bool): Scale, which will be added automatically.
    """

    def __init__(self, opt):
        super(Vimeo90KDataset, self).__init__()
        self.opt = opt
        self.gt_root, self.lq_root = Path(opt['dataroot_gt']), Path(opt['dataroot_lq'])

        with open(opt['meta_info_file'], 'r') as fin:
            self.keys = [line.split(' ')[0] for line in fin]

        # file client (io backend)
        self.file_client = None
        self.io_backend_opt = opt['io_backend']
        self.is_lmdb = False
        if self.io_backend_opt['type'] == 'lmdb':
            self.is_lmdb = True
            self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root]
            self.io_backend_opt['client_keys'] = ['lq', 'gt']

        # indices of input images
        self.neighbor_list = [i + (9 - opt['num_frame']) // 2 for i in range(opt['num_frame'])]

        # temporal augmentation configs
        self.random_reverse = opt['random_reverse']
        logger = get_root_logger()
        logger.info(f'Random reverse is {self.random_reverse}.')

    def __getitem__(self, index):
        if self.file_client is None:
            self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)

        # random reverse
        if self.random_reverse and random.random() < 0.5:
            self.neighbor_list.reverse()

        scale = self.opt['scale']
        gt_size = self.opt['gt_size']
        key = self.keys[index]
        clip, seq = key.split('/')  # key example: 00001/0001

        # get the GT frame (im4.png)
        if self.is_lmdb:
            img_gt_path = f'{key}/im4'
        else:
            img_gt_path = self.gt_root / clip / seq / 'im4.png'
        img_bytes = self.file_client.get(img_gt_path, 'gt')
        img_gt = imfrombytes(img_bytes, float32=True)

        # get the neighboring LQ frames
        img_lqs = []
        for neighbor in self.neighbor_list:
            if self.is_lmdb:
                img_lq_path = f'{clip}/{seq}/im{neighbor}'
            else:
                img_lq_path = self.lq_root / clip / seq / f'im{neighbor}.png'
            img_bytes = self.file_client.get(img_lq_path, 'lq')
            img_lq = imfrombytes(img_bytes, float32=True)
            img_lqs.append(img_lq)

        # randomly crop
        img_gt, img_lqs = paired_random_crop(img_gt, img_lqs, gt_size, scale, img_gt_path)

        # augmentation - flip, rotate
        img_lqs.append(img_gt)
        img_results = augment(img_lqs, self.opt['use_flip'], self.opt['use_rot'])

        img_results = img2tensor(img_results)
        img_lqs = torch.stack(img_results[0:-1], dim=0)
        img_gt = img_results[-1]

        # img_lqs: (t, c, h, w)
        # img_gt: (c, h, w)
        # key: str
        return {'lq': img_lqs, 'gt': img_gt, 'key': key}

    def __len__(self):
        return len(self.keys)