|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.nn.utils.spectral_norm as SpectralNorm |
|
from torch.autograd import Function |
|
|
|
|
|
class BlurFunctionBackward(Function): |
|
|
|
@staticmethod |
|
def forward(ctx, grad_output, kernel, kernel_flip): |
|
ctx.save_for_backward(kernel, kernel_flip) |
|
grad_input = F.conv2d(grad_output, kernel_flip, padding=1, groups=grad_output.shape[1]) |
|
return grad_input |
|
|
|
@staticmethod |
|
def backward(ctx, gradgrad_output): |
|
kernel, kernel_flip = ctx.saved_tensors |
|
grad_input = F.conv2d(gradgrad_output, kernel, padding=1, groups=gradgrad_output.shape[1]) |
|
return grad_input, None, None |
|
|
|
|
|
class BlurFunction(Function): |
|
|
|
@staticmethod |
|
def forward(ctx, x, kernel, kernel_flip): |
|
ctx.save_for_backward(kernel, kernel_flip) |
|
output = F.conv2d(x, kernel, padding=1, groups=x.shape[1]) |
|
return output |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
kernel, kernel_flip = ctx.saved_tensors |
|
grad_input = BlurFunctionBackward.apply(grad_output, kernel, kernel_flip) |
|
return grad_input, None, None |
|
|
|
|
|
blur = BlurFunction.apply |
|
|
|
|
|
class Blur(nn.Module): |
|
|
|
def __init__(self, channel): |
|
super().__init__() |
|
kernel = torch.tensor([[1, 2, 1], [2, 4, 2], [1, 2, 1]], dtype=torch.float32) |
|
kernel = kernel.view(1, 1, 3, 3) |
|
kernel = kernel / kernel.sum() |
|
kernel_flip = torch.flip(kernel, [2, 3]) |
|
|
|
self.kernel = kernel.repeat(channel, 1, 1, 1) |
|
self.kernel_flip = kernel_flip.repeat(channel, 1, 1, 1) |
|
|
|
def forward(self, x): |
|
return blur(x, self.kernel.type_as(x), self.kernel_flip.type_as(x)) |
|
|
|
|
|
def calc_mean_std(feat, eps=1e-5): |
|
"""Calculate mean and std for adaptive_instance_normalization. |
|
|
|
Args: |
|
feat (Tensor): 4D tensor. |
|
eps (float): A small value added to the variance to avoid |
|
divide-by-zero. Default: 1e-5. |
|
""" |
|
size = feat.size() |
|
assert len(size) == 4, 'The input feature should be 4D tensor.' |
|
n, c = size[:2] |
|
feat_var = feat.view(n, c, -1).var(dim=2) + eps |
|
feat_std = feat_var.sqrt().view(n, c, 1, 1) |
|
feat_mean = feat.view(n, c, -1).mean(dim=2).view(n, c, 1, 1) |
|
return feat_mean, feat_std |
|
|
|
|
|
def adaptive_instance_normalization(content_feat, style_feat): |
|
"""Adaptive instance normalization. |
|
|
|
Adjust the reference features to have the similar color and illuminations |
|
as those in the degradate features. |
|
|
|
Args: |
|
content_feat (Tensor): The reference feature. |
|
style_feat (Tensor): The degradate features. |
|
""" |
|
size = content_feat.size() |
|
style_mean, style_std = calc_mean_std(style_feat) |
|
content_mean, content_std = calc_mean_std(content_feat) |
|
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size) |
|
return normalized_feat * style_std.expand(size) + style_mean.expand(size) |
|
|
|
|
|
def AttentionBlock(in_channel): |
|
return nn.Sequential( |
|
SpectralNorm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)), nn.LeakyReLU(0.2, True), |
|
SpectralNorm(nn.Conv2d(in_channel, in_channel, 3, 1, 1))) |
|
|
|
|
|
def conv_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1, bias=True): |
|
"""Conv block used in MSDilationBlock.""" |
|
|
|
return nn.Sequential( |
|
SpectralNorm( |
|
nn.Conv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
dilation=dilation, |
|
padding=((kernel_size - 1) // 2) * dilation, |
|
bias=bias)), |
|
nn.LeakyReLU(0.2), |
|
SpectralNorm( |
|
nn.Conv2d( |
|
out_channels, |
|
out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
dilation=dilation, |
|
padding=((kernel_size - 1) // 2) * dilation, |
|
bias=bias)), |
|
) |
|
|
|
|
|
class MSDilationBlock(nn.Module): |
|
"""Multi-scale dilation block.""" |
|
|
|
def __init__(self, in_channels, kernel_size=3, dilation=(1, 1, 1, 1), bias=True): |
|
super(MSDilationBlock, self).__init__() |
|
|
|
self.conv_blocks = nn.ModuleList() |
|
for i in range(4): |
|
self.conv_blocks.append(conv_block(in_channels, in_channels, kernel_size, dilation=dilation[i], bias=bias)) |
|
self.conv_fusion = SpectralNorm( |
|
nn.Conv2d( |
|
in_channels * 4, |
|
in_channels, |
|
kernel_size=kernel_size, |
|
stride=1, |
|
padding=(kernel_size - 1) // 2, |
|
bias=bias)) |
|
|
|
def forward(self, x): |
|
out = [] |
|
for i in range(4): |
|
out.append(self.conv_blocks[i](x)) |
|
out = torch.cat(out, 1) |
|
out = self.conv_fusion(out) + x |
|
return out |
|
|
|
|
|
class UpResBlock(nn.Module): |
|
|
|
def __init__(self, in_channel): |
|
super(UpResBlock, self).__init__() |
|
self.body = nn.Sequential( |
|
nn.Conv2d(in_channel, in_channel, 3, 1, 1), |
|
nn.LeakyReLU(0.2, True), |
|
nn.Conv2d(in_channel, in_channel, 3, 1, 1), |
|
) |
|
|
|
def forward(self, x): |
|
out = x + self.body(x) |
|
return out |
|
|