|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from scipy import linalg |
|
from tqdm import tqdm |
|
|
|
from basicsr.archs.inception import InceptionV3 |
|
|
|
|
|
def load_patched_inception_v3(device='cuda', resize_input=True, normalize_input=False): |
|
|
|
|
|
inception = InceptionV3([3], resize_input=resize_input, normalize_input=normalize_input) |
|
inception = nn.DataParallel(inception).eval().to(device) |
|
return inception |
|
|
|
|
|
@torch.no_grad() |
|
def extract_inception_features(data_generator, inception, len_generator=None, device='cuda'): |
|
"""Extract inception features. |
|
|
|
Args: |
|
data_generator (generator): A data generator. |
|
inception (nn.Module): Inception model. |
|
len_generator (int): Length of the data_generator to show the |
|
progressbar. Default: None. |
|
device (str): Device. Default: cuda. |
|
|
|
Returns: |
|
Tensor: Extracted features. |
|
""" |
|
if len_generator is not None: |
|
pbar = tqdm(total=len_generator, unit='batch', desc='Extract') |
|
else: |
|
pbar = None |
|
features = [] |
|
|
|
for data in data_generator: |
|
if pbar: |
|
pbar.update(1) |
|
data = data.to(device) |
|
feature = inception(data)[0].view(data.shape[0], -1) |
|
features.append(feature.to('cpu')) |
|
if pbar: |
|
pbar.close() |
|
features = torch.cat(features, 0) |
|
return features |
|
|
|
|
|
def calculate_fid(mu1, sigma1, mu2, sigma2, eps=1e-6): |
|
"""Numpy implementation of the Frechet Distance. |
|
|
|
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) |
|
and X_2 ~ N(mu_2, C_2) is |
|
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). |
|
Stable version by Dougal J. Sutherland. |
|
|
|
Args: |
|
mu1 (np.array): The sample mean over activations. |
|
sigma1 (np.array): The covariance matrix over activations for |
|
generated samples. |
|
mu2 (np.array): The sample mean over activations, precalculated on an |
|
representative data set. |
|
sigma2 (np.array): The covariance matrix over activations, |
|
precalculated on an representative data set. |
|
|
|
Returns: |
|
float: The Frechet Distance. |
|
""" |
|
assert mu1.shape == mu2.shape, 'Two mean vectors have different lengths' |
|
assert sigma1.shape == sigma2.shape, ('Two covariances have different dimensions') |
|
|
|
cov_sqrt, _ = linalg.sqrtm(sigma1 @ sigma2, disp=False) |
|
|
|
|
|
if not np.isfinite(cov_sqrt).all(): |
|
print('Product of cov matrices is singular. Adding {eps} to diagonal ' 'of cov estimates') |
|
offset = np.eye(sigma1.shape[0]) * eps |
|
cov_sqrt = linalg.sqrtm((sigma1 + offset) @ (sigma2 + offset)) |
|
|
|
|
|
if np.iscomplexobj(cov_sqrt): |
|
if not np.allclose(np.diagonal(cov_sqrt).imag, 0, atol=1e-3): |
|
m = np.max(np.abs(cov_sqrt.imag)) |
|
raise ValueError(f'Imaginary component {m}') |
|
cov_sqrt = cov_sqrt.real |
|
|
|
mean_diff = mu1 - mu2 |
|
mean_norm = mean_diff @ mean_diff |
|
trace = np.trace(sigma1) + np.trace(sigma2) - 2 * np.trace(cov_sqrt) |
|
fid = mean_norm + trace |
|
|
|
return fid |
|
|