|
import cv2 |
|
import numpy as np |
|
import torch |
|
|
|
from basicsr.archs.rrdbnet_arch import RRDBNet |
|
|
|
|
|
def init_sr_model(model_path): |
|
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32) |
|
model.load_state_dict(torch.load(model_path)['params'], strict=True) |
|
model.eval() |
|
model = model.cuda() |
|
return model |
|
|
|
|
|
def enhance(model, image): |
|
img = image.astype(np.float32) / 255. |
|
img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float() |
|
img = img.unsqueeze(0).cuda() |
|
with torch.no_grad(): |
|
output = model(img) |
|
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() |
|
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) |
|
output = (output * 255.0).round().astype(np.uint8) |
|
return output |
|
|