|
|
|
|
|
|
|
import os |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.utils.model_zoo import load_url |
|
from torchvision import models |
|
|
|
|
|
|
|
FID_WEIGHTS_URL = 'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth' |
|
LOCAL_FID_WEIGHTS = 'experiments/pretrained_models/pt_inception-2015-12-05-6726825d.pth' |
|
|
|
|
|
class InceptionV3(nn.Module): |
|
"""Pretrained InceptionV3 network returning feature maps""" |
|
|
|
|
|
|
|
DEFAULT_BLOCK_INDEX = 3 |
|
|
|
|
|
BLOCK_INDEX_BY_DIM = { |
|
64: 0, |
|
192: 1, |
|
768: 2, |
|
2048: 3 |
|
} |
|
|
|
def __init__(self, |
|
output_blocks=(DEFAULT_BLOCK_INDEX), |
|
resize_input=True, |
|
normalize_input=True, |
|
requires_grad=False, |
|
use_fid_inception=True): |
|
"""Build pretrained InceptionV3. |
|
|
|
Args: |
|
output_blocks (list[int]): Indices of blocks to return features of. |
|
Possible values are: |
|
- 0: corresponds to output of first max pooling |
|
- 1: corresponds to output of second max pooling |
|
- 2: corresponds to output which is fed to aux classifier |
|
- 3: corresponds to output of final average pooling |
|
resize_input (bool): If true, bilinearly resizes input to width and |
|
height 299 before feeding input to model. As the network |
|
without fully connected layers is fully convolutional, it |
|
should be able to handle inputs of arbitrary size, so resizing |
|
might not be strictly needed. Default: True. |
|
normalize_input (bool): If true, scales the input from range (0, 1) |
|
to the range the pretrained Inception network expects, |
|
namely (-1, 1). Default: True. |
|
requires_grad (bool): If true, parameters of the model require |
|
gradients. Possibly useful for finetuning the network. |
|
Default: False. |
|
use_fid_inception (bool): If true, uses the pretrained Inception |
|
model used in Tensorflow's FID implementation. |
|
If false, uses the pretrained Inception model available in |
|
torchvision. The FID Inception model has different weights |
|
and a slightly different structure from torchvision's |
|
Inception model. If you want to compute FID scores, you are |
|
strongly advised to set this parameter to true to get |
|
comparable results. Default: True. |
|
""" |
|
super(InceptionV3, self).__init__() |
|
|
|
self.resize_input = resize_input |
|
self.normalize_input = normalize_input |
|
self.output_blocks = sorted(output_blocks) |
|
self.last_needed_block = max(output_blocks) |
|
|
|
assert self.last_needed_block <= 3, ('Last possible output block index is 3') |
|
|
|
self.blocks = nn.ModuleList() |
|
|
|
if use_fid_inception: |
|
inception = fid_inception_v3() |
|
else: |
|
try: |
|
inception = models.inception_v3(pretrained=True, init_weights=False) |
|
except TypeError: |
|
|
|
inception = models.inception_v3(pretrained=True) |
|
|
|
|
|
block0 = [ |
|
inception.Conv2d_1a_3x3, inception.Conv2d_2a_3x3, inception.Conv2d_2b_3x3, |
|
nn.MaxPool2d(kernel_size=3, stride=2) |
|
] |
|
self.blocks.append(nn.Sequential(*block0)) |
|
|
|
|
|
if self.last_needed_block >= 1: |
|
block1 = [inception.Conv2d_3b_1x1, inception.Conv2d_4a_3x3, nn.MaxPool2d(kernel_size=3, stride=2)] |
|
self.blocks.append(nn.Sequential(*block1)) |
|
|
|
|
|
if self.last_needed_block >= 2: |
|
block2 = [ |
|
inception.Mixed_5b, |
|
inception.Mixed_5c, |
|
inception.Mixed_5d, |
|
inception.Mixed_6a, |
|
inception.Mixed_6b, |
|
inception.Mixed_6c, |
|
inception.Mixed_6d, |
|
inception.Mixed_6e, |
|
] |
|
self.blocks.append(nn.Sequential(*block2)) |
|
|
|
|
|
if self.last_needed_block >= 3: |
|
block3 = [ |
|
inception.Mixed_7a, inception.Mixed_7b, inception.Mixed_7c, |
|
nn.AdaptiveAvgPool2d(output_size=(1, 1)) |
|
] |
|
self.blocks.append(nn.Sequential(*block3)) |
|
|
|
for param in self.parameters(): |
|
param.requires_grad = requires_grad |
|
|
|
def forward(self, x): |
|
"""Get Inception feature maps. |
|
|
|
Args: |
|
x (Tensor): Input tensor of shape (b, 3, h, w). |
|
Values are expected to be in range (-1, 1). You can also input |
|
(0, 1) with setting normalize_input = True. |
|
|
|
Returns: |
|
list[Tensor]: Corresponding to the selected output block, sorted |
|
ascending by index. |
|
""" |
|
output = [] |
|
|
|
if self.resize_input: |
|
x = F.interpolate(x, size=(299, 299), mode='bilinear', align_corners=False) |
|
|
|
if self.normalize_input: |
|
x = 2 * x - 1 |
|
|
|
for idx, block in enumerate(self.blocks): |
|
x = block(x) |
|
if idx in self.output_blocks: |
|
output.append(x) |
|
|
|
if idx == self.last_needed_block: |
|
break |
|
|
|
return output |
|
|
|
|
|
def fid_inception_v3(): |
|
"""Build pretrained Inception model for FID computation. |
|
|
|
The Inception model for FID computation uses a different set of weights |
|
and has a slightly different structure than torchvision's Inception. |
|
|
|
This method first constructs torchvision's Inception and then patches the |
|
necessary parts that are different in the FID Inception model. |
|
""" |
|
try: |
|
inception = models.inception_v3(num_classes=1008, aux_logits=False, pretrained=False, init_weights=False) |
|
except TypeError: |
|
|
|
inception = models.inception_v3(num_classes=1008, aux_logits=False, pretrained=False) |
|
|
|
inception.Mixed_5b = FIDInceptionA(192, pool_features=32) |
|
inception.Mixed_5c = FIDInceptionA(256, pool_features=64) |
|
inception.Mixed_5d = FIDInceptionA(288, pool_features=64) |
|
inception.Mixed_6b = FIDInceptionC(768, channels_7x7=128) |
|
inception.Mixed_6c = FIDInceptionC(768, channels_7x7=160) |
|
inception.Mixed_6d = FIDInceptionC(768, channels_7x7=160) |
|
inception.Mixed_6e = FIDInceptionC(768, channels_7x7=192) |
|
inception.Mixed_7b = FIDInceptionE_1(1280) |
|
inception.Mixed_7c = FIDInceptionE_2(2048) |
|
|
|
if os.path.exists(LOCAL_FID_WEIGHTS): |
|
state_dict = torch.load(LOCAL_FID_WEIGHTS, map_location=lambda storage, loc: storage) |
|
else: |
|
state_dict = load_url(FID_WEIGHTS_URL, progress=True) |
|
|
|
inception.load_state_dict(state_dict) |
|
return inception |
|
|
|
|
|
class FIDInceptionA(models.inception.InceptionA): |
|
"""InceptionA block patched for FID computation""" |
|
|
|
def __init__(self, in_channels, pool_features): |
|
super(FIDInceptionA, self).__init__(in_channels, pool_features) |
|
|
|
def forward(self, x): |
|
branch1x1 = self.branch1x1(x) |
|
|
|
branch5x5 = self.branch5x5_1(x) |
|
branch5x5 = self.branch5x5_2(branch5x5) |
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x) |
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) |
|
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) |
|
|
|
|
|
|
|
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False) |
|
branch_pool = self.branch_pool(branch_pool) |
|
|
|
outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool] |
|
return torch.cat(outputs, 1) |
|
|
|
|
|
class FIDInceptionC(models.inception.InceptionC): |
|
"""InceptionC block patched for FID computation""" |
|
|
|
def __init__(self, in_channels, channels_7x7): |
|
super(FIDInceptionC, self).__init__(in_channels, channels_7x7) |
|
|
|
def forward(self, x): |
|
branch1x1 = self.branch1x1(x) |
|
|
|
branch7x7 = self.branch7x7_1(x) |
|
branch7x7 = self.branch7x7_2(branch7x7) |
|
branch7x7 = self.branch7x7_3(branch7x7) |
|
|
|
branch7x7dbl = self.branch7x7dbl_1(x) |
|
branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) |
|
branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) |
|
branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) |
|
branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl) |
|
|
|
|
|
|
|
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False) |
|
branch_pool = self.branch_pool(branch_pool) |
|
|
|
outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool] |
|
return torch.cat(outputs, 1) |
|
|
|
|
|
class FIDInceptionE_1(models.inception.InceptionE): |
|
"""First InceptionE block patched for FID computation""" |
|
|
|
def __init__(self, in_channels): |
|
super(FIDInceptionE_1, self).__init__(in_channels) |
|
|
|
def forward(self, x): |
|
branch1x1 = self.branch1x1(x) |
|
|
|
branch3x3 = self.branch3x3_1(x) |
|
branch3x3 = [ |
|
self.branch3x3_2a(branch3x3), |
|
self.branch3x3_2b(branch3x3), |
|
] |
|
branch3x3 = torch.cat(branch3x3, 1) |
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x) |
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) |
|
branch3x3dbl = [ |
|
self.branch3x3dbl_3a(branch3x3dbl), |
|
self.branch3x3dbl_3b(branch3x3dbl), |
|
] |
|
branch3x3dbl = torch.cat(branch3x3dbl, 1) |
|
|
|
|
|
|
|
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False) |
|
branch_pool = self.branch_pool(branch_pool) |
|
|
|
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] |
|
return torch.cat(outputs, 1) |
|
|
|
|
|
class FIDInceptionE_2(models.inception.InceptionE): |
|
"""Second InceptionE block patched for FID computation""" |
|
|
|
def __init__(self, in_channels): |
|
super(FIDInceptionE_2, self).__init__(in_channels) |
|
|
|
def forward(self, x): |
|
branch1x1 = self.branch1x1(x) |
|
|
|
branch3x3 = self.branch3x3_1(x) |
|
branch3x3 = [ |
|
self.branch3x3_2a(branch3x3), |
|
self.branch3x3_2b(branch3x3), |
|
] |
|
branch3x3 = torch.cat(branch3x3, 1) |
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x) |
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) |
|
branch3x3dbl = [ |
|
self.branch3x3dbl_3a(branch3x3dbl), |
|
self.branch3x3dbl_3b(branch3x3dbl), |
|
] |
|
branch3x3dbl = torch.cat(branch3x3dbl, 1) |
|
|
|
|
|
|
|
|
|
|
|
branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1) |
|
branch_pool = self.branch_pool(branch_pool) |
|
|
|
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] |
|
return torch.cat(outputs, 1) |
|
|