import math import numpy as np import torch def cubic(x): """cubic function used for calculate_weights_indices.""" absx = torch.abs(x) absx2 = absx**2 absx3 = absx**3 return (1.5 * absx3 - 2.5 * absx2 + 1) * ( (absx <= 1).type_as(absx)) + (-0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2) * (((absx > 1) * (absx <= 2)).type_as(absx)) def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing): """Calculate weights and indices, used for imresize function. Args: in_length (int): Input length. out_length (int): Output length. scale (float): Scale factor. kernel_width (int): Kernel width. antialisaing (bool): Whether to apply anti-aliasing when downsampling. """ if (scale < 1) and antialiasing: # Use a modified kernel (larger kernel width) to simultaneously # interpolate and antialias kernel_width = kernel_width / scale # Output-space coordinates x = torch.linspace(1, out_length, out_length) # Input-space coordinates. Calculate the inverse mapping such that 0.5 # in output space maps to 0.5 in input space, and 0.5 + scale in output # space maps to 1.5 in input space. u = x / scale + 0.5 * (1 - 1 / scale) # What is the left-most pixel that can be involved in the computation? left = torch.floor(u - kernel_width / 2) # What is the maximum number of pixels that can be involved in the # computation? Note: it's OK to use an extra pixel here; if the # corresponding weights are all zero, it will be eliminated at the end # of this function. p = math.ceil(kernel_width) + 2 # The indices of the input pixels involved in computing the k-th output # pixel are in row k of the indices matrix. indices = left.view(out_length, 1).expand(out_length, p) + torch.linspace(0, p - 1, p).view(1, p).expand( out_length, p) # The weights used to compute the k-th output pixel are in row k of the # weights matrix. distance_to_center = u.view(out_length, 1).expand(out_length, p) - indices # apply cubic kernel if (scale < 1) and antialiasing: weights = scale * cubic(distance_to_center * scale) else: weights = cubic(distance_to_center) # Normalize the weights matrix so that each row sums to 1. weights_sum = torch.sum(weights, 1).view(out_length, 1) weights = weights / weights_sum.expand(out_length, p) # If a column in weights is all zero, get rid of it. only consider the # first and last column. weights_zero_tmp = torch.sum((weights == 0), 0) if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6): indices = indices.narrow(1, 1, p - 2) weights = weights.narrow(1, 1, p - 2) if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6): indices = indices.narrow(1, 0, p - 2) weights = weights.narrow(1, 0, p - 2) weights = weights.contiguous() indices = indices.contiguous() sym_len_s = -indices.min() + 1 sym_len_e = indices.max() - in_length indices = indices + sym_len_s - 1 return weights, indices, int(sym_len_s), int(sym_len_e) @torch.no_grad() def imresize(img, scale, antialiasing=True): """imresize function same as MATLAB. It now only supports bicubic. The same scale applies for both height and width. Args: img (Tensor | Numpy array): Tensor: Input image with shape (c, h, w), [0, 1] range. Numpy: Input image with shape (h, w, c), [0, 1] range. scale (float): Scale factor. The same scale applies for both height and width. antialisaing (bool): Whether to apply anti-aliasing when downsampling. Default: True. Returns: Tensor: Output image with shape (c, h, w), [0, 1] range, w/o round. """ if type(img).__module__ == np.__name__: # numpy type numpy_type = True img = torch.from_numpy(img.transpose(2, 0, 1)).float() else: numpy_type = False in_c, in_h, in_w = img.size() out_h, out_w = math.ceil(in_h * scale), math.ceil(in_w * scale) kernel_width = 4 kernel = 'cubic' # get weights and indices weights_h, indices_h, sym_len_hs, sym_len_he = calculate_weights_indices(in_h, out_h, scale, kernel, kernel_width, antialiasing) weights_w, indices_w, sym_len_ws, sym_len_we = calculate_weights_indices(in_w, out_w, scale, kernel, kernel_width, antialiasing) # process H dimension # symmetric copying img_aug = torch.FloatTensor(in_c, in_h + sym_len_hs + sym_len_he, in_w) img_aug.narrow(1, sym_len_hs, in_h).copy_(img) sym_patch = img[:, :sym_len_hs, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) img_aug.narrow(1, 0, sym_len_hs).copy_(sym_patch_inv) sym_patch = img[:, -sym_len_he:, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) img_aug.narrow(1, sym_len_hs + in_h, sym_len_he).copy_(sym_patch_inv) out_1 = torch.FloatTensor(in_c, out_h, in_w) kernel_width = weights_h.size(1) for i in range(out_h): idx = int(indices_h[i][0]) for j in range(in_c): out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_h[i]) # process W dimension # symmetric copying out_1_aug = torch.FloatTensor(in_c, out_h, in_w + sym_len_ws + sym_len_we) out_1_aug.narrow(2, sym_len_ws, in_w).copy_(out_1) sym_patch = out_1[:, :, :sym_len_ws] inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(2, inv_idx) out_1_aug.narrow(2, 0, sym_len_ws).copy_(sym_patch_inv) sym_patch = out_1[:, :, -sym_len_we:] inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(2, inv_idx) out_1_aug.narrow(2, sym_len_ws + in_w, sym_len_we).copy_(sym_patch_inv) out_2 = torch.FloatTensor(in_c, out_h, out_w) kernel_width = weights_w.size(1) for i in range(out_w): idx = int(indices_w[i][0]) for j in range(in_c): out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_w[i]) if numpy_type: out_2 = out_2.numpy().transpose(1, 2, 0) return out_2 def rgb2ycbcr(img, y_only=False): """Convert a RGB image to YCbCr image. This function produces the same results as Matlab's `rgb2ycbcr` function. It implements the ITU-R BT.601 conversion for standard-definition television. See more details in https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion. It differs from a similar function in cv2.cvtColor: `RGB <-> YCrCb`. In OpenCV, it implements a JPEG conversion. See more details in https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion. Args: img (ndarray): The input image. It accepts: 1. np.uint8 type with range [0, 255]; 2. np.float32 type with range [0, 1]. y_only (bool): Whether to only return Y channel. Default: False. Returns: ndarray: The converted YCbCr image. The output image has the same type and range as input image. """ img_type = img.dtype img = _convert_input_type_range(img) if y_only: out_img = np.dot(img, [65.481, 128.553, 24.966]) + 16.0 else: out_img = np.matmul( img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], [24.966, 112.0, -18.214]]) + [16, 128, 128] out_img = _convert_output_type_range(out_img, img_type) return out_img def bgr2ycbcr(img, y_only=False): """Convert a BGR image to YCbCr image. The bgr version of rgb2ycbcr. It implements the ITU-R BT.601 conversion for standard-definition television. See more details in https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion. It differs from a similar function in cv2.cvtColor: `BGR <-> YCrCb`. In OpenCV, it implements a JPEG conversion. See more details in https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion. Args: img (ndarray): The input image. It accepts: 1. np.uint8 type with range [0, 255]; 2. np.float32 type with range [0, 1]. y_only (bool): Whether to only return Y channel. Default: False. Returns: ndarray: The converted YCbCr image. The output image has the same type and range as input image. """ img_type = img.dtype img = _convert_input_type_range(img) if y_only: out_img = np.dot(img, [24.966, 128.553, 65.481]) + 16.0 else: out_img = np.matmul( img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) + [16, 128, 128] out_img = _convert_output_type_range(out_img, img_type) return out_img def ycbcr2rgb(img): """Convert a YCbCr image to RGB image. This function produces the same results as Matlab's ycbcr2rgb function. It implements the ITU-R BT.601 conversion for standard-definition television. See more details in https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion. It differs from a similar function in cv2.cvtColor: `YCrCb <-> RGB`. In OpenCV, it implements a JPEG conversion. See more details in https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion. Args: img (ndarray): The input image. It accepts: 1. np.uint8 type with range [0, 255]; 2. np.float32 type with range [0, 1]. Returns: ndarray: The converted RGB image. The output image has the same type and range as input image. """ img_type = img.dtype img = _convert_input_type_range(img) * 255 out_img = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071], [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836] # noqa: E126 out_img = _convert_output_type_range(out_img, img_type) return out_img def ycbcr2bgr(img): """Convert a YCbCr image to BGR image. The bgr version of ycbcr2rgb. It implements the ITU-R BT.601 conversion for standard-definition television. See more details in https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion. It differs from a similar function in cv2.cvtColor: `YCrCb <-> BGR`. In OpenCV, it implements a JPEG conversion. See more details in https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion. Args: img (ndarray): The input image. It accepts: 1. np.uint8 type with range [0, 255]; 2. np.float32 type with range [0, 1]. Returns: ndarray: The converted BGR image. The output image has the same type and range as input image. """ img_type = img.dtype img = _convert_input_type_range(img) * 255 out_img = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0.00791071, -0.00153632, 0], [0, -0.00318811, 0.00625893]]) * 255.0 + [-276.836, 135.576, -222.921] # noqa: E126 out_img = _convert_output_type_range(out_img, img_type) return out_img def _convert_input_type_range(img): """Convert the type and range of the input image. It converts the input image to np.float32 type and range of [0, 1]. It is mainly used for pre-processing the input image in colorspace convertion functions such as rgb2ycbcr and ycbcr2rgb. Args: img (ndarray): The input image. It accepts: 1. np.uint8 type with range [0, 255]; 2. np.float32 type with range [0, 1]. Returns: (ndarray): The converted image with type of np.float32 and range of [0, 1]. """ img_type = img.dtype img = img.astype(np.float32) if img_type == np.float32: pass elif img_type == np.uint8: img /= 255. else: raise TypeError('The img type should be np.float32 or np.uint8, ' f'but got {img_type}') return img def _convert_output_type_range(img, dst_type): """Convert the type and range of the image according to dst_type. It converts the image to desired type and range. If `dst_type` is np.uint8, images will be converted to np.uint8 type with range [0, 255]. If `dst_type` is np.float32, it converts the image to np.float32 type with range [0, 1]. It is mainly used for post-processing images in colorspace convertion functions such as rgb2ycbcr and ycbcr2rgb. Args: img (ndarray): The image to be converted with np.float32 type and range [0, 255]. dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it converts the image to np.uint8 type with range [0, 255]. If dst_type is np.float32, it converts the image to np.float32 type with range [0, 1]. Returns: (ndarray): The converted image with desired type and range. """ if dst_type not in (np.uint8, np.float32): raise TypeError('The dst_type should be np.float32 or np.uint8, ' f'but got {dst_type}') if dst_type == np.uint8: img = img.round() else: img /= 255. return img.astype(dst_type)