import cv2 import math import numpy as np import random # -------------------------------------------------------------------- # # --------------------------- blur kernels --------------------------- # # -------------------------------------------------------------------- # def sigma_matrix2(sig_x, sig_y, theta): """Calculate the rotated sigma matrix (two dimensional matrix). Args: sig_x (float): sig_y (float): theta (float): Radian measurement. Returns: ndarray: Rotated sigma matrix. """ D = np.array([[sig_x**2, 0], [0, sig_y**2]]) U = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) return np.dot(U, np.dot(D, U.T)) def mesh_grid(kernel_size): """Generate the mesh grid, centering at zero. Args: kernel_size (int): Returns: xy (ndarray): with the shape (kernel_size, kernel_size, 2) xx (ndarray): with the shape (kernel_size, kernel_size) yy (ndarray): with the shape (kernel_size, kernel_size) """ ax = np.arange(-kernel_size // 2 + 1., kernel_size // 2 + 1.) xx, yy = np.meshgrid(ax, ax) xy = np.hstack((xx.reshape((kernel_size * kernel_size, 1)), yy.reshape(kernel_size * kernel_size, 1))).reshape(kernel_size, kernel_size, 2) return xy, xx, yy def pdf2(sigma_matrix, grid): """Calculate PDF of the bivariate Gaussian distribution. Args: sigma_matrix (ndarray): with the shape (2, 2) grid (ndarray): generated by :func:`mesh_grid`, with the shape (K, K, 2), K is the kernel size. Returns: kernel (ndarrray): un-normalized kernel. """ inverse_sigma = np.linalg.inv(sigma_matrix) kernel = np.exp(-0.5 * np.sum(np.dot(grid, inverse_sigma) * grid, 2)) return kernel def mass_center_shift(kernel_size, kernel): """Calculate the shift of the mass center of a kenrel. Args: kernel_size (int): kernel (ndarray): normalized kernel. Returns: delta_h (float): delta_w (float): """ ax = np.arange(-kernel_size // 2 + 1., kernel_size // 2 + 1.) col_sum, row_sum = np.sum(kernel, axis=0), np.sum(kernel, axis=1) delta_h = np.dot(row_sum, ax) delta_w = np.dot(col_sum, ax) return delta_h, delta_w def bivariate_anisotropic_Gaussian(kernel_size, sig_x, sig_y, theta, grid=None): """Generate a bivariate anisotropic Gaussian kernel. Args: kernel_size (int): sig_x (float): sig_y (float): theta (float): Radian measurement. grid (ndarray, optional): generated by :func:`mesh_grid`, with the shape (K, K, 2), K is the kernel size. Default: None Returns: kernel (ndarray): normalized kernel. """ if grid is None: grid, _, _ = mesh_grid(kernel_size) sigma_matrix = sigma_matrix2(sig_x, sig_y, theta) kernel = pdf2(sigma_matrix, grid) kernel = kernel / np.sum(kernel) return kernel def bivariate_isotropic_Gaussian(kernel_size, sig, grid=None): """Generate a bivariate isotropic Gaussian kernel. Args: kernel_size (int): sig (float): grid (ndarray, optional): generated by :func:`mesh_grid`, with the shape (K, K, 2), K is the kernel size. Default: None Returns: kernel (ndarray): normalized kernel. """ if grid is None: grid, _, _ = mesh_grid(kernel_size) sigma_matrix = np.array([[sig**2, 0], [0, sig**2]]) kernel = pdf2(sigma_matrix, grid) kernel = kernel / np.sum(kernel) return kernel def random_bivariate_anisotropic_Gaussian(kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=None, strict=False): """Randomly generate bivariate anisotropic Gaussian kernels. Args: kernel_size (int): sigma_x_range (tuple): [0.6, 5] sigma_y_range (tuple): [0.6, 5] rotation range (tuple): [-math.pi, math.pi] noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None Returns: kernel (ndarray): """ assert kernel_size % 2 == 1, 'Kernel size must be an odd number.' assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.' assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.' assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.' sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1]) sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1]) if strict: sigma_max = np.max([sigma_x, sigma_y]) sigma_min = np.min([sigma_x, sigma_y]) sigma_x, sigma_y = sigma_max, sigma_min rotation = np.random.uniform(rotation_range[0], rotation_range[1]) kernel = bivariate_anisotropic_Gaussian(kernel_size, sigma_x, sigma_y, rotation) # add multiplicative noise if noise_range is not None: assert noise_range[0] < noise_range[1], 'Wrong noise range.' noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape) kernel = kernel * noise kernel = kernel / np.sum(kernel) if strict: return kernel, sigma_x, sigma_y, rotation else: return kernel def random_bivariate_isotropic_Gaussian(kernel_size, sigma_range, noise_range=None, strict=False): """Randomly generate bivariate isotropic Gaussian kernels. Args: kernel_size (int): sigma_range (tuple): [0.6, 5] noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None Returns: kernel (ndarray): """ assert kernel_size % 2 == 1, 'Kernel size must be an odd number.' assert sigma_range[0] < sigma_range[1], 'Wrong sigma_x_range.' sigma = np.random.uniform(sigma_range[0], sigma_range[1]) kernel = bivariate_isotropic_Gaussian(kernel_size, sigma) # add multiplicative noise if noise_range is not None: assert noise_range[0] < noise_range[1], 'Wrong noise range.' noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape) kernel = kernel * noise kernel = kernel / np.sum(kernel) if strict: return kernel, sigma else: return kernel def random_mixed_kernels(kernel_list, kernel_prob, kernel_size=21, sigma_x_range=[0.6, 5], sigma_y_range=[0.6, 5], rotation_range=[-math.pi, math.pi], beta_range=[0.5, 8], noise_range=None): """Randomly generate mixed kernels. Args: kernel_list (tuple): a list name of kenrel types, support ['iso', 'aniso'] kernel_prob (tuple): corresponding kernel probability for each kernel type kernel_size (int): sigma_x_range (tuple): [0.6, 5] sigma_y_range (tuple): [0.6, 5] rotation range (tuple): [-math.pi, math.pi] beta_range (tuple): [0.5, 8] noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None Returns: kernel (ndarray): """ kernel_type = random.choices(kernel_list, kernel_prob)[0] if kernel_type == 'iso': kernel = random_bivariate_isotropic_Gaussian(kernel_size, sigma_x_range, noise_range=noise_range) elif kernel_type == 'aniso': kernel = random_bivariate_anisotropic_Gaussian( kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range) # add multiplicative noise if noise_range is not None: assert noise_range[0] < noise_range[1], 'Wrong noise range.' noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape) kernel = kernel * noise kernel = kernel / np.sum(kernel) return kernel # ------------------------------------------------------------- # # --------------------------- noise --------------------------- # # ------------------------------------------------------------- # # ----------------------- Gaussian Noise ----------------------- # def generate_gaussian_noise(img, sigma=10, gray_noise=False): """Generate Gaussian noise. Args: img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32. sigma (float): Noise scale (measured in range 255). Default: 10. Returns: (Numpy array): Returned noisy image, shape (h, w, c), range[0, 1], float32. """ noise = np.float32(np.random.randn(*(img.shape))) * sigma / 255. if gray_noise: noise = np.float32(np.random.randn(*(img.shape[0:2]))) * sigma / 255. noise = np.expand_dims(noise, axis=2).repeat(3, axis=2) else: noise = np.float32(np.random.randn(*(img.shape))) * sigma / 255. return noise def add_gaussian_noise(img, sigma=10, clip=True, rounds=False, gray_noise=False): """Add Gaussian noise. Args: img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32. sigma (float): Noise scale (measured in range 255). Default: 10. Returns: (Numpy array): Returned noisy image, shape (h, w, c), range[0, 1], float32. """ noise = generate_gaussian_noise(img, sigma, gray_noise) out = img + noise if clip and rounds: out = np.clip((out * 255.0).round(), 0, 255) / 255. elif clip: out = np.clip(out, 0, 1) elif rounds: out = (out * 255.0).round() / 255. return out # ----------------------- Random Gaussian Noise ----------------------- # def random_generate_gaussian_noise(img, sigma_range=(0, 10), gray_prob=0): sigma = np.random.uniform(sigma_range[0], sigma_range[1]) if np.random.uniform() < gray_prob: gray_noise = True else: gray_noise = False return generate_gaussian_noise(img, sigma, gray_noise) def random_add_gaussian_noise(img, sigma_range=(0, 1.0), gray_prob=0, clip=True, rounds=False): noise = random_generate_gaussian_noise(img, sigma_range, gray_prob) out = img + noise if clip and rounds: out = np.clip((out * 255.0).round(), 0, 255) / 255. elif clip: out = np.clip(out, 0, 1) elif rounds: out = (out * 255.0).round() / 255. return out # ------------------------------------------------------------------------ # # --------------------------- JPEG compression --------------------------- # # ------------------------------------------------------------------------ # def add_jpg_compression(img, quality=90): """Add JPG compression artifacts. Args: img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32. quality (float): JPG compression quality. 0 for lowest quality, 100 for best quality. Default: 90. Returns: (Numpy array): Returned image after JPG, shape (h, w, c), range[0, 1], float32. """ img = np.clip(img, 0, 1) encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), quality] _, encimg = cv2.imencode('.jpg', img * 255., encode_param) img = np.float32(cv2.imdecode(encimg, 1)) / 255. return img def random_add_jpg_compression(img, quality_range=(90, 100)): """Randomly add JPG compression artifacts. Args: img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32. quality_range (tuple[float] | list[float]): JPG compression quality range. 0 for lowest quality, 100 for best quality. Default: (90, 100). Returns: (Numpy array): Returned image after JPG, shape (h, w, c), range[0, 1], float32. """ quality = np.random.uniform(quality_range[0], quality_range[1]) return add_jpg_compression(img, quality)