import cv2 import numpy as np import torch from os import path as osp from torch.nn import functional as F from basicsr.data.transforms import mod_crop from basicsr.utils import img2tensor, scandir def read_img_seq(path, require_mod_crop=False, scale=1): """Read a sequence of images from a given folder path. Args: path (list[str] | str): List of image paths or image folder path. require_mod_crop (bool): Require mod crop for each image. Default: False. scale (int): Scale factor for mod_crop. Default: 1. Returns: Tensor: size (t, c, h, w), RGB, [0, 1]. """ if isinstance(path, list): img_paths = path else: img_paths = sorted(list(scandir(path, full_path=True))) imgs = [cv2.imread(v).astype(np.float32) / 255. for v in img_paths] if require_mod_crop: imgs = [mod_crop(img, scale) for img in imgs] imgs = img2tensor(imgs, bgr2rgb=True, float32=True) imgs = torch.stack(imgs, dim=0) return imgs def generate_frame_indices(crt_idx, max_frame_num, num_frames, padding='reflection'): """Generate an index list for reading `num_frames` frames from a sequence of images. Args: crt_idx (int): Current center index. max_frame_num (int): Max number of the sequence of images (from 1). num_frames (int): Reading num_frames frames. padding (str): Padding mode, one of 'replicate' | 'reflection' | 'reflection_circle' | 'circle' Examples: current_idx = 0, num_frames = 5 The generated frame indices under different padding mode: replicate: [0, 0, 0, 1, 2] reflection: [2, 1, 0, 1, 2] reflection_circle: [4, 3, 0, 1, 2] circle: [3, 4, 0, 1, 2] Returns: list[int]: A list of indices. """ assert num_frames % 2 == 1, 'num_frames should be an odd number.' assert padding in ('replicate', 'reflection', 'reflection_circle', 'circle'), f'Wrong padding mode: {padding}.' max_frame_num = max_frame_num - 1 # start from 0 num_pad = num_frames // 2 indices = [] for i in range(crt_idx - num_pad, crt_idx + num_pad + 1): if i < 0: if padding == 'replicate': pad_idx = 0 elif padding == 'reflection': pad_idx = -i elif padding == 'reflection_circle': pad_idx = crt_idx + num_pad - i else: pad_idx = num_frames + i elif i > max_frame_num: if padding == 'replicate': pad_idx = max_frame_num elif padding == 'reflection': pad_idx = max_frame_num * 2 - i elif padding == 'reflection_circle': pad_idx = (crt_idx - num_pad) - (i - max_frame_num) else: pad_idx = i - num_frames else: pad_idx = i indices.append(pad_idx) return indices def paired_paths_from_lmdb(folders, keys): """Generate paired paths from lmdb files. Contents of lmdb. Taking the `lq.lmdb` for example, the file structure is: lq.lmdb ├── data.mdb ├── lock.mdb ├── meta_info.txt The data.mdb and lock.mdb are standard lmdb files and you can refer to https://lmdb.readthedocs.io/en/release/ for more details. The meta_info.txt is a specified txt file to record the meta information of our datasets. It will be automatically created when preparing datasets by our provided dataset tools. Each line in the txt file records 1)image name (with extension), 2)image shape, 3)compression level, separated by a white space. Example: `baboon.png (120,125,3) 1` We use the image name without extension as the lmdb key. Note that we use the same key for the corresponding lq and gt images. Args: folders (list[str]): A list of folder path. The order of list should be [input_folder, gt_folder]. keys (list[str]): A list of keys identifying folders. The order should be in consistent with folders, e.g., ['lq', 'gt']. Note that this key is different from lmdb keys. Returns: list[str]: Returned path list. """ assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. ' f'But got {len(folders)}') assert len(keys) == 2, ('The len of keys should be 2 with [input_key, gt_key]. ' f'But got {len(keys)}') input_folder, gt_folder = folders input_key, gt_key = keys if not (input_folder.endswith('.lmdb') and gt_folder.endswith('.lmdb')): raise ValueError(f'{input_key} folder and {gt_key} folder should both in lmdb ' f'formats. But received {input_key}: {input_folder}; ' f'{gt_key}: {gt_folder}') # ensure that the two meta_info files are the same with open(osp.join(input_folder, 'meta_info.txt')) as fin: input_lmdb_keys = [line.split('.')[0] for line in fin] with open(osp.join(gt_folder, 'meta_info.txt')) as fin: gt_lmdb_keys = [line.split('.')[0] for line in fin] if set(input_lmdb_keys) != set(gt_lmdb_keys): raise ValueError(f'Keys in {input_key}_folder and {gt_key}_folder are different.') else: paths = [] for lmdb_key in sorted(input_lmdb_keys): paths.append(dict([(f'{input_key}_path', lmdb_key), (f'{gt_key}_path', lmdb_key)])) return paths def paired_paths_from_meta_info_file(folders, keys, meta_info_file, filename_tmpl): """Generate paired paths from an meta information file. Each line in the meta information file contains the image names and image shape (usually for gt), separated by a white space. Example of an meta information file: ``` 0001_s001.png (480,480,3) 0001_s002.png (480,480,3) ``` Args: folders (list[str]): A list of folder path. The order of list should be [input_folder, gt_folder]. keys (list[str]): A list of keys identifying folders. The order should be in consistent with folders, e.g., ['lq', 'gt']. meta_info_file (str): Path to the meta information file. filename_tmpl (str): Template for each filename. Note that the template excludes the file extension. Usually the filename_tmpl is for files in the input folder. Returns: list[str]: Returned path list. """ assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. ' f'But got {len(folders)}') assert len(keys) == 2, ('The len of keys should be 2 with [input_key, gt_key]. ' f'But got {len(keys)}') input_folder, gt_folder = folders input_key, gt_key = keys with open(meta_info_file, 'r') as fin: gt_names = [line.split(' ')[0] for line in fin] paths = [] for gt_name in gt_names: basename, ext = osp.splitext(osp.basename(gt_name)) input_name = f'{filename_tmpl.format(basename)}{ext}' input_path = osp.join(input_folder, input_name) gt_path = osp.join(gt_folder, gt_name) paths.append(dict([(f'{input_key}_path', input_path), (f'{gt_key}_path', gt_path)])) return paths def paired_paths_from_folder(folders, keys, filename_tmpl): """Generate paired paths from folders. Args: folders (list[str]): A list of folder path. The order of list should be [input_folder, gt_folder]. keys (list[str]): A list of keys identifying folders. The order should be in consistent with folders, e.g., ['lq', 'gt']. filename_tmpl (str): Template for each filename. Note that the template excludes the file extension. Usually the filename_tmpl is for files in the input folder. Returns: list[str]: Returned path list. """ assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. ' f'But got {len(folders)}') assert len(keys) == 2, ('The len of keys should be 2 with [input_key, gt_key]. ' f'But got {len(keys)}') input_folder, gt_folder = folders input_key, gt_key = keys input_paths = list(scandir(input_folder)) gt_paths = list(scandir(gt_folder)) assert len(input_paths) == len(gt_paths), (f'{input_key} and {gt_key} datasets have different number of images: ' f'{len(input_paths)}, {len(gt_paths)}.') paths = [] for gt_path in gt_paths: basename, ext = osp.splitext(osp.basename(gt_path)) input_name = f'{filename_tmpl.format(basename)}{ext}' input_path = osp.join(input_folder, input_name) assert input_name in input_paths, (f'{input_name} is not in ' f'{input_key}_paths.') gt_path = osp.join(gt_folder, gt_path) paths.append(dict([(f'{input_key}_path', input_path), (f'{gt_key}_path', gt_path)])) return paths def paths_from_folder(folder): """Generate paths from folder. Args: folder (str): Folder path. Returns: list[str]: Returned path list. """ paths = list(scandir(folder)) paths = [osp.join(folder, path) for path in paths] return paths def paths_from_lmdb(folder): """Generate paths from lmdb. Args: folder (str): Folder path. Returns: list[str]: Returned path list. """ if not folder.endswith('.lmdb'): raise ValueError(f'Folder {folder}folder should in lmdb format.') with open(osp.join(folder, 'meta_info.txt')) as fin: paths = [line.split('.')[0] for line in fin] return paths def generate_gaussian_kernel(kernel_size=13, sigma=1.6): """Generate Gaussian kernel used in `duf_downsample`. Args: kernel_size (int): Kernel size. Default: 13. sigma (float): Sigma of the Gaussian kernel. Default: 1.6. Returns: np.array: The Gaussian kernel. """ from scipy.ndimage import filters as filters kernel = np.zeros((kernel_size, kernel_size)) # set element at the middle to one, a dirac delta kernel[kernel_size // 2, kernel_size // 2] = 1 # gaussian-smooth the dirac, resulting in a gaussian filter return filters.gaussian_filter(kernel, sigma) def duf_downsample(x, kernel_size=13, scale=4): """Downsamping with Gaussian kernel used in the DUF official code. Args: x (Tensor): Frames to be downsampled, with shape (b, t, c, h, w). kernel_size (int): Kernel size. Default: 13. scale (int): Downsampling factor. Supported scale: (2, 3, 4). Default: 4. Returns: Tensor: DUF downsampled frames. """ assert scale in (2, 3, 4), f'Only support scale (2, 3, 4), but got {scale}.' squeeze_flag = False if x.ndim == 4: squeeze_flag = True x = x.unsqueeze(0) b, t, c, h, w = x.size() x = x.view(-1, 1, h, w) pad_w, pad_h = kernel_size // 2 + scale * 2, kernel_size // 2 + scale * 2 x = F.pad(x, (pad_w, pad_w, pad_h, pad_h), 'reflect') gaussian_filter = generate_gaussian_kernel(kernel_size, 0.4 * scale) gaussian_filter = torch.from_numpy(gaussian_filter).type_as(x).unsqueeze(0).unsqueeze(0) x = F.conv2d(x, gaussian_filter, stride=scale) x = x[:, :, 2:-2, 2:-2] x = x.view(b, t, c, x.size(2), x.size(3)) if squeeze_flag: x = x.squeeze(0) return x