Update README.md
Browse files
README.md
CHANGED
@@ -26,10 +26,10 @@ model-index:
|
|
26 |
metrics:
|
27 |
- name: Test WER
|
28 |
type: wer
|
29 |
-
value:
|
30 |
- name: Test CER
|
31 |
type: cer
|
32 |
-
value: 2.
|
33 |
---
|
34 |
|
35 |
# Czech wav2vec2-xls-r-300m-cs-250
|
@@ -37,18 +37,13 @@ model-index:
|
|
37 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice 8.0 dataset as well as other datasets listed below.
|
38 |
|
39 |
It achieves the following results on the evaluation set:
|
40 |
-
-
|
41 |
-
-
|
42 |
-
-
|
43 |
-
- eval_runtime: 358.9895
|
44 |
-
- eval_samples_per_second: 20.243
|
45 |
-
- eval_steps_per_second: 2.532
|
46 |
-
- epoch: 3.13
|
47 |
-
- step: 31200
|
48 |
|
49 |
The `eval.py` script results using a LM are:
|
50 |
-
WER: 0.
|
51 |
-
CER: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -107,19 +102,56 @@ The Common Voice 8.0 `train` and `validation` datasets were used for training, a
|
|
107 |
|
108 |
- Plátek, Ondřej; Dušek, Ondřej and Jurčíček, Filip, 2016, Vystadial 2016 – Czech data, LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University, http://hdl.handle.net/11234/1-1740.
|
109 |
|
|
|
110 |
### Training hyperparameters
|
111 |
|
112 |
The following hyperparameters were used during training:
|
113 |
-
- learning_rate:
|
114 |
-
- train_batch_size:
|
115 |
- eval_batch_size: 8
|
116 |
- seed: 42
|
117 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
118 |
- lr_scheduler_type: linear
|
119 |
-
- lr_scheduler_warmup_steps:
|
120 |
-
- num_epochs:
|
121 |
- mixed_precision_training: Native AMP
|
122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
### Framework versions
|
124 |
|
125 |
- Transformers 4.16.2
|
|
|
26 |
metrics:
|
27 |
- name: Test WER
|
28 |
type: wer
|
29 |
+
value: 7.3
|
30 |
- name: Test CER
|
31 |
type: cer
|
32 |
+
value: 2.1
|
33 |
---
|
34 |
|
35 |
# Czech wav2vec2-xls-r-300m-cs-250
|
|
|
37 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice 8.0 dataset as well as other datasets listed below.
|
38 |
|
39 |
It achieves the following results on the evaluation set:
|
40 |
+
- Loss: 0.1271
|
41 |
+
- Wer: 0.1475
|
42 |
+
- Cer: 0.0329
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
The `eval.py` script results using a LM are:
|
45 |
+
- WER: 0.07274312090176113
|
46 |
+
- CER: 0.021207369275558875
|
47 |
|
48 |
## Model description
|
49 |
|
|
|
102 |
|
103 |
- Plátek, Ondřej; Dušek, Ondřej and Jurčíček, Filip, 2016, Vystadial 2016 – Czech data, LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University, http://hdl.handle.net/11234/1-1740.
|
104 |
|
105 |
+
|
106 |
### Training hyperparameters
|
107 |
|
108 |
The following hyperparameters were used during training:
|
109 |
+
- learning_rate: 0.0001
|
110 |
+
- train_batch_size: 32
|
111 |
- eval_batch_size: 8
|
112 |
- seed: 42
|
113 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
114 |
- lr_scheduler_type: linear
|
115 |
+
- lr_scheduler_warmup_steps: 800
|
116 |
+
- num_epochs: 5
|
117 |
- mixed_precision_training: Native AMP
|
118 |
|
119 |
+
### Training results
|
120 |
+
|
121 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
122 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
|
123 |
+
| 3.4203 | 0.16 | 800 | 3.3148 | 1.0 | 1.0 |
|
124 |
+
| 2.8151 | 0.32 | 1600 | 0.8508 | 0.8938 | 0.2345 |
|
125 |
+
| 0.9411 | 0.48 | 2400 | 0.3335 | 0.3723 | 0.0847 |
|
126 |
+
| 0.7408 | 0.64 | 3200 | 0.2573 | 0.2840 | 0.0642 |
|
127 |
+
| 0.6516 | 0.8 | 4000 | 0.2365 | 0.2581 | 0.0595 |
|
128 |
+
| 0.6242 | 0.96 | 4800 | 0.2039 | 0.2433 | 0.0541 |
|
129 |
+
| 0.5754 | 1.12 | 5600 | 0.1832 | 0.2156 | 0.0482 |
|
130 |
+
| 0.5626 | 1.28 | 6400 | 0.1827 | 0.2091 | 0.0463 |
|
131 |
+
| 0.5342 | 1.44 | 7200 | 0.1744 | 0.2033 | 0.0468 |
|
132 |
+
| 0.4965 | 1.6 | 8000 | 0.1705 | 0.1963 | 0.0444 |
|
133 |
+
| 0.5047 | 1.76 | 8800 | 0.1604 | 0.1889 | 0.0422 |
|
134 |
+
| 0.4814 | 1.92 | 9600 | 0.1604 | 0.1827 | 0.0411 |
|
135 |
+
| 0.4471 | 2.09 | 10400 | 0.1566 | 0.1822 | 0.0406 |
|
136 |
+
| 0.4509 | 2.25 | 11200 | 0.1619 | 0.1853 | 0.0432 |
|
137 |
+
| 0.4415 | 2.41 | 12000 | 0.1513 | 0.1764 | 0.0397 |
|
138 |
+
| 0.4313 | 2.57 | 12800 | 0.1515 | 0.1739 | 0.0392 |
|
139 |
+
| 0.4163 | 2.73 | 13600 | 0.1445 | 0.1695 | 0.0377 |
|
140 |
+
| 0.4142 | 2.89 | 14400 | 0.1478 | 0.1699 | 0.0385 |
|
141 |
+
| 0.4184 | 3.05 | 15200 | 0.1430 | 0.1669 | 0.0376 |
|
142 |
+
| 0.3886 | 3.21 | 16000 | 0.1433 | 0.1644 | 0.0374 |
|
143 |
+
| 0.3795 | 3.37 | 16800 | 0.1426 | 0.1648 | 0.0373 |
|
144 |
+
| 0.3859 | 3.53 | 17600 | 0.1357 | 0.1604 | 0.0361 |
|
145 |
+
| 0.3762 | 3.69 | 18400 | 0.1344 | 0.1558 | 0.0349 |
|
146 |
+
| 0.384 | 3.85 | 19200 | 0.1379 | 0.1576 | 0.0359 |
|
147 |
+
| 0.3762 | 4.01 | 20000 | 0.1344 | 0.1539 | 0.0346 |
|
148 |
+
| 0.3559 | 4.17 | 20800 | 0.1339 | 0.1525 | 0.0351 |
|
149 |
+
| 0.3683 | 4.33 | 21600 | 0.1315 | 0.1518 | 0.0342 |
|
150 |
+
| 0.3572 | 4.49 | 22400 | 0.1307 | 0.1507 | 0.0342 |
|
151 |
+
| 0.3494 | 4.65 | 23200 | 0.1294 | 0.1491 | 0.0335 |
|
152 |
+
| 0.3476 | 4.81 | 24000 | 0.1287 | 0.1491 | 0.0336 |
|
153 |
+
| 0.3475 | 4.97 | 24800 | 0.1271 | 0.1475 | 0.0329 |
|
154 |
+
|
155 |
### Framework versions
|
156 |
|
157 |
- Transformers 4.16.2
|