quant-tests / bench-TriLMs.py
compilade's picture
Format bench-TriLMs.py with black
879e55c
#!/usr/bin/env python3
from __future__ import annotations
from pathlib import Path
from urllib import request
import os
import shlex
import shutil
import subprocess
import sys
from typing import Any, Sequence
import logging
import json
import argparse
curdir = Path(os.path.dirname(__file__))
logger = logging.getLogger("bench")
MODEL_DIR = curdir / "bench-TriLMs-models"
LLAMA_CPP_PATH = curdir / "."
MODEL_SIZES = ("1.5", "2.4", "3.9")
ALL_TYPES = ("TQ1_0", "TQ2_0", "Q4_K_M", "Q8_0", "F16", "BF16")
GPU_TYPES = ("TQ2_0", "Q4_K_M", "Q8_0", "F16")
def gather_models(sizes: Sequence[str] = MODEL_SIZES):
logger.info("Gathering models")
if not MODEL_DIR.exists():
MODEL_DIR.mkdir(parents=True, exist_ok=True)
for size in sizes:
filename = f"TriLM_{size}B_Unpacked-TQ1_0-F16.gguf"
file = MODEL_DIR / filename
if not file.exists():
url = (
f"https://huggingface.co/compilade/quant-tests/resolve/main/{filename}"
)
logger.info(f"Fetching {filename} from {url}")
request.urlretrieve(url, file)
def build_llama_cpp(options: Sequence[str]):
logger.info("Building llama.cpp")
builddir = LLAMA_CPP_PATH / "build"
if builddir.exists():
# Clear previous config
cmake_cache = builddir / "CMakeCache.txt"
cmake_files = builddir / "CMakeFiles"
logger.info("Removing %s and %s", cmake_cache, cmake_files)
os.system(shlex.join(("rm", "-rf", str(cmake_cache), str(cmake_files))))
builddir.mkdir(exist_ok=True)
old_cwd = os.path.curdir
os.chdir(builddir)
os.system(shlex.join(("cmake", "..", *options)))
os.system(f"make -j{os.cpu_count()} llama-bench llama-quantize test-backend-ops")
os.chdir(old_cwd)
def quantize(types: Sequence[str] = ALL_TYPES, sizes: Sequence[str] = MODEL_SIZES):
logger.info("Make all model types we'll test")
for size in sizes:
source = MODEL_DIR / f"TriLM_{size}B_Unpacked-TQ1_0-F16.gguf"
for ty in types:
target = MODEL_DIR / f"TriLM_{size}B_Unpacked-{ty}.gguf"
if not target.exists() or target.is_file() and target.stat().st_size == 0:
command = shlex.join(
(
str(LLAMA_CPP_PATH / "build" / "bin" / "llama-quantize"),
"--allow-requantize",
str(source),
str(target),
ty,
)
)
logger.info("Running: %s", command)
ret = os.system(command)
if ret != 0 or target.is_file() and target.stat().st_size == 0:
logger.error("Failed to quantize to %s", target)
# Should it still continue?
def llama_bench(
repetitions: int = 5,
types: Sequence[str] = ALL_TYPES,
sizes: Sequence[str] = MODEL_SIZES,
) -> list[dict[str, Any]]:
logger.info("Test each model one by one for different numbers of threads")
threads = [2**i for i in range(5) if 2**i <= os.cpu_count()]
logger.info(f"Numbers of threads to be tested: {threads}")
out = []
for size in sizes:
for ty in types:
for th in threads:
model_path = MODEL_DIR / f"TriLM_{size}B_Unpacked-{ty}.gguf"
args = [
"-v",
"-m",
str(model_path),
"-t",
str(th),
"-r",
str(repetitions),
"-p",
"512",
"-n",
"128",
"-o",
"json",
]
command = [str(LLAMA_CPP_PATH / "build" / "bin" / "llama-bench")] + args
logger.info("Running: %s", " ".join(command))
result = subprocess.run(command, capture_output=True)
logger.debug(result.stderr.decode(errors="ignore"))
if result.returncode != 0 or len(result.stdout) == 0:
logger.error("Failed to run %s", " ".join(command))
break
new_output = json.loads(result.stdout)
logger.info(json.dumps(new_output, indent=4))
out.extend(new_output)
return out
def test_backend_perf() -> str:
logger.info("Test MUL_MAT performance")
result = subprocess.run(
[
str(LLAMA_CPP_PATH / "build" / "bin" / "test-backend-ops"),
"perf",
"-o",
"MUL_MAT",
],
capture_output=True,
)
logger.debug(result.stdout.decode())
return result.stdout.decode(encoding="utf-8")
def parse_args(args: Sequence[str]):
parser = argparse.ArgumentParser(
prog=args[0], description="Benchmark ternary models"
)
parser.add_argument("--gpu", action="store_true", help="Run benchmarks on GPU")
parser.add_argument("--cpu", action="store_true", help="Run benchmarks on CPU")
parser.add_argument(
"--llama-cpp-path",
type=Path,
default=LLAMA_CPP_PATH,
help="Path to a llama.cpp checkout",
)
parser.add_argument(
"--model-dir",
type=Path,
default=MODEL_DIR,
help="Where the tested models will be stored",
)
parser.add_argument(
"--repetitions",
type=int,
default=5,
required=False,
help="How many repetitions are run for each test",
)
parser.add_argument(
"--out",
type=Path,
default=Path(os.path.curdir) / "result.json",
help="Path of the benchmark results to be written",
)
parser.add_argument(
"--force", action="store_true", help="Overwrite the result file without asking"
)
return parser.parse_args(args[1:])
if __name__ == "__main__":
args = parse_args(sys.argv)
logging.basicConfig(level=logging.DEBUG)
LLAMA_CPP_PATH = args.llama_cpp_path
MODEL_DIR = args.model_dir
output_file = Path(args.out).absolute()
if output_file.exists() and not args.force:
ask = input("Result file exists. Do you want to overwrite it? [y/N]")
if not ask.strip().lower().startswith("y"):
logger.info("Not running, leaving output file intact")
exit()
results = []
mulmat_perf = []
repetitions: int = args.repetitions
if args.cpu:
gather_models()
build_llama_cpp(["-DGGML_NATIVE=ON", "-DGGML_CPU=ON"])
quantize()
mulmat_perf.append(test_backend_perf())
results.extend(llama_bench(repetitions=repetitions))
if args.gpu:
gather_models()
build_llama_cpp(["-DGGML_NATIVE=ON", "-DGGML_CUDA=ON", "-DGGML_CUDA_F16=ON"])
quantize()
mulmat_perf.append(test_backend_perf())
results.extend(llama_bench(repetitions=repetitions, types=GPU_TYPES))
final_result: dict[str, Any] = {
"mulmat_perf": mulmat_perf,
"results": results,
}
if shutil.which("lscpu") is not None:
logger.info("Getting CPU info")
final_result["cpuinfo"] = subprocess.run(
["lscpu"], capture_output=True
).stdout.decode(encoding="utf-8")
if args.gpu and shutil.which("nvidia-smi") is not None:
logger.info("Getting NVIDIA GPU info")
final_result["gpuinfo"] = subprocess.run(
["nvidia-smi", "-q"], capture_output=True
).stdout.decode(encoding="utf-8")
logger.info("Writing output to: %s", output_file)
logger.debug("Final results: %s", json.dumps(final_result, indent=4))
with open(output_file, "w") as f:
json.dump(final_result, f, indent=4)
f.flush()