Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
---
|
4 |
+
|
5 |
+
# Compressed LLM Model Zone
|
6 |
+
|
7 |
+
The models are prepared by [Visual Informatics Group @ University of Texas at Austin (VITA-group)](https://vita-group.github.io/). Credits to Ajay Jaiswal, Zhenyu Zhang, Zhangheng Li, Lu Yin, Shiwei Liu and Junyuan Hong.
|
8 |
+
|
9 |
+
License: [MIT License](https://opensource.org/license/mit/)
|
10 |
+
|
11 |
+
Setup environment
|
12 |
+
```shell
|
13 |
+
pip install torch==2.0.0+cu117 torchvision==0.15.1+cu117 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu117
|
14 |
+
pip install transformers==4.31.0
|
15 |
+
pip install accelerate
|
16 |
+
pip install auto-gptq # for gptq
|
17 |
+
pip install sentencepiece
|
18 |
+
```
|
19 |
+
|
20 |
+
How to use pruned models
|
21 |
+
```python
|
22 |
+
import torch
|
23 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
24 |
+
base_model = 'llama-2-7b'
|
25 |
+
comp_method = 'magnitude_unstructured'
|
26 |
+
comp_degree = 0.2
|
27 |
+
model_path = f'vita-group/{base_model}_{comp_method}'
|
28 |
+
model = AutoModelForCausalLM.from_pretrained(
|
29 |
+
model_path,
|
30 |
+
revision=f's{comp_degree}',
|
31 |
+
torch_dtype=torch.float16,
|
32 |
+
low_cpu_mem_usage=True,
|
33 |
+
device_map="auto"
|
34 |
+
)
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-hf')
|
36 |
+
input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids.cuda()
|
37 |
+
outputs = model.generate(input_ids, max_new_tokens=128)
|
38 |
+
print(tokenizer.decode(outputs[0]))
|
39 |
+
```
|
40 |
+
|
41 |
+
How to use wanda+gptq models
|
42 |
+
```python
|
43 |
+
from transformers import AutoTokenizer
|
44 |
+
from auto_gptq import AutoGPTQForCausalLM
|
45 |
+
model_path = 'vita-group/llama-2-7b_wanda_2_4_gptq_4bit_128g'
|
46 |
+
tokenizer_path = 'meta-llama/Llama-2-7b-hf'
|
47 |
+
model = AutoGPTQForCausalLM.from_quantized(
|
48 |
+
model_path,
|
49 |
+
# inject_fused_attention=False, # or
|
50 |
+
disable_exllama=True,
|
51 |
+
device_map='auto',
|
52 |
+
)
|
53 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, trust_remote_code=True)
|
54 |
+
input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids.to('cuda')
|
55 |
+
outputs = model.generate(input_ids=input_ids, max_length=128)
|
56 |
+
tokenizer.decode(outputs[0])
|
57 |
+
```
|
58 |
+
|
59 |
+
How to use gptq models
|
60 |
+
```python
|
61 |
+
from transformers import AutoTokenizer
|
62 |
+
from auto_gptq import AutoGPTQForCausalLM
|
63 |
+
# model_path = 'vita-group/llama-2-7b_wanda_2_4_gptq_4bit_128g'
|
64 |
+
# tokenizer_path = 'meta-llama/Llama-2-7b-hf'
|
65 |
+
model_path = 'vita-group/vicuna-7b-v1.3_gptq'
|
66 |
+
tokenizer_path = 'lmsys/vicuna-7b-v1.3'
|
67 |
+
model = AutoGPTQForCausalLM.from_quantized(
|
68 |
+
model_path,
|
69 |
+
# inject_fused_attention=False, # or
|
70 |
+
disable_exllama=True,
|
71 |
+
device_map='auto',
|
72 |
+
revision='2bit_128g',
|
73 |
+
)
|
74 |
+
from transformers import AutoTokenizer
|
75 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, trust_remote_code=True)
|
76 |
+
input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids.to('cuda')
|
77 |
+
outputs = model.generate(input_ids=input_ids, max_length=128)
|
78 |
+
tokenizer.decode(outputs[0])
|
79 |
+
```
|
80 |
+
|
81 |
+
|
82 |
+
| | Base Model | Model Size | Compression Method | Compression Degree |
|
83 |
+
|---:|:-------------|:-------------|:----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
|
84 |
+
| 0 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.1) |
|
85 |
+
| 1 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.2) |
|
86 |
+
| 2 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.3) |
|
87 |
+
| 3 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.5) |
|
88 |
+
| 4 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.6) |
|
89 |
+
| 5 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.1) |
|
90 |
+
| 6 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.2) |
|
91 |
+
| 7 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.3) |
|
92 |
+
| 8 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.5) |
|
93 |
+
| 9 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.6) |
|
94 |
+
| 10 | Llama-2 | 7b | [wanda_gptq](https://huggingface.co/vita-group/llama-2-7b_wanda_2_4_gptq_4bit_128g) | 4bit_128g |
|
95 |
+
| 11 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.1) |
|
96 |
+
| 12 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.2) |
|
97 |
+
| 13 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.3) |
|
98 |
+
| 14 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.5) |
|
99 |
+
| 15 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.6) |
|
100 |
+
| 16 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [10bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/10bit_128g) |
|
101 |
+
| 17 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [12bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/12bit_128g) |
|
102 |
+
| 18 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [14bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/14bit_128g) |
|
103 |
+
| 19 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [2bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/2bit_128g) |
|
104 |
+
| 20 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [3bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/3bit_128g) |
|
105 |
+
| 21 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [4bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/4bit_128g) |
|
106 |
+
| 22 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [6bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/6bit_128g) |
|
107 |
+
| 23 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [8bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/8bit_128g) |
|
108 |
+
| 24 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [10bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/10bit_128g) |
|
109 |
+
| 25 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [12bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/12bit_128g) |
|
110 |
+
| 26 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [14bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/14bit_128g) |
|
111 |
+
| 27 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [2bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/2bit_128g) |
|
112 |
+
| 28 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [3bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/3bit_128g) |
|
113 |
+
| 29 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [4bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/4bit_128g) |
|
114 |
+
| 30 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [6bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/6bit_128g) |
|
115 |
+
| 31 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [8bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/8bit_128g) |
|
116 |
+
|
117 |
+
|
118 |
+
|