yangwang825
commited on
Upload feature extractor
Browse files
feature_extraction_wav2vec2_spkreg.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Feature extractor class for Wav2Vec2
|
3 |
+
"""
|
4 |
+
|
5 |
+
from typing import List, Optional, Union
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
|
10 |
+
from transformers.feature_extraction_utils import BatchFeature
|
11 |
+
from transformers.utils import PaddingStrategy, TensorType, logging
|
12 |
+
|
13 |
+
logger = logging.get_logger(__name__)
|
14 |
+
|
15 |
+
|
16 |
+
class Wav2Vec2SpkRegFeatureExtractor(SequenceFeatureExtractor):
|
17 |
+
r"""
|
18 |
+
Constructs a Wav2Vec2 feature extractor.
|
19 |
+
|
20 |
+
This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
|
21 |
+
most of the main methods. Users should refer to this superclass for more information regarding those methods.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
feature_size (`int`, *optional*, defaults to 1):
|
25 |
+
The feature dimension of the extracted features.
|
26 |
+
sampling_rate (`int`, *optional*, defaults to 16000):
|
27 |
+
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
|
28 |
+
padding_value (`float`, *optional*, defaults to 0.0):
|
29 |
+
The value that is used to fill the padding values.
|
30 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
31 |
+
Whether or not to zero-mean unit-variance normalize the input. Normalizing can help to significantly
|
32 |
+
improve the performance for some models, *e.g.*,
|
33 |
+
[wav2vec2-lv60](https://huggingface.co/models?search=lv60).
|
34 |
+
return_attention_mask (`bool`, *optional*, defaults to `False`):
|
35 |
+
Whether or not [`~Wav2Vec2FeatureExtractor.__call__`] should return `attention_mask`.
|
36 |
+
|
37 |
+
<Tip>
|
38 |
+
|
39 |
+
Wav2Vec2 models that have set `config.feat_extract_norm == "group"`, such as
|
40 |
+
[wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base-960h), have **not** been trained using
|
41 |
+
`attention_mask`. For such models, `input_values` should simply be padded with 0 and no `attention_mask`
|
42 |
+
should be passed.
|
43 |
+
|
44 |
+
For Wav2Vec2 models that have set `config.feat_extract_norm == "layer"`, such as
|
45 |
+
[wav2vec2-lv60](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self), `attention_mask` should be
|
46 |
+
passed for batched inference.
|
47 |
+
|
48 |
+
</Tip>"""
|
49 |
+
|
50 |
+
model_input_names = ["input_values", "attention_mask"]
|
51 |
+
|
52 |
+
def __init__(
|
53 |
+
self,
|
54 |
+
feature_size=1,
|
55 |
+
sampling_rate=16000,
|
56 |
+
padding_value=0.0,
|
57 |
+
return_attention_mask=False,
|
58 |
+
do_normalize=True,
|
59 |
+
**kwargs,
|
60 |
+
):
|
61 |
+
super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs)
|
62 |
+
self.return_attention_mask = return_attention_mask
|
63 |
+
self.do_normalize = do_normalize
|
64 |
+
|
65 |
+
@staticmethod
|
66 |
+
def zero_mean_unit_var_norm(
|
67 |
+
input_values: List[np.ndarray], attention_mask: List[np.ndarray], padding_value: float = 0.0
|
68 |
+
) -> List[np.ndarray]:
|
69 |
+
"""
|
70 |
+
Every array in the list is normalized to have zero mean and unit variance
|
71 |
+
"""
|
72 |
+
if attention_mask is not None:
|
73 |
+
attention_mask = np.array(attention_mask, np.int32)
|
74 |
+
normed_input_values = []
|
75 |
+
|
76 |
+
for vector, length in zip(input_values, attention_mask.sum(-1)):
|
77 |
+
normed_slice = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7)
|
78 |
+
if length < normed_slice.shape[0]:
|
79 |
+
normed_slice[length:] = padding_value
|
80 |
+
|
81 |
+
normed_input_values.append(normed_slice)
|
82 |
+
else:
|
83 |
+
normed_input_values = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values]
|
84 |
+
|
85 |
+
return normed_input_values
|
86 |
+
|
87 |
+
def __call__(
|
88 |
+
self,
|
89 |
+
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
|
90 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
91 |
+
max_length: Optional[int] = None,
|
92 |
+
truncation: bool = False,
|
93 |
+
pad_to_multiple_of: Optional[int] = None,
|
94 |
+
return_attention_mask: Optional[bool] = None,
|
95 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
96 |
+
sampling_rate: Optional[int] = None,
|
97 |
+
**kwargs,
|
98 |
+
) -> BatchFeature:
|
99 |
+
"""
|
100 |
+
Main method to featurize and prepare for the model one or several sequence(s).
|
101 |
+
|
102 |
+
Args:
|
103 |
+
raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
|
104 |
+
The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
|
105 |
+
values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
|
106 |
+
stereo, i.e. single float per timestep.
|
107 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
108 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
109 |
+
index) among:
|
110 |
+
|
111 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
112 |
+
sequence if provided).
|
113 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
114 |
+
acceptable input length for the model if that argument is not provided.
|
115 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
116 |
+
lengths).
|
117 |
+
max_length (`int`, *optional*):
|
118 |
+
Maximum length of the returned list and optionally padding length (see above).
|
119 |
+
truncation (`bool`):
|
120 |
+
Activates truncation to cut input sequences longer than *max_length* to *max_length*.
|
121 |
+
pad_to_multiple_of (`int`, *optional*):
|
122 |
+
If set will pad the sequence to a multiple of the provided value.
|
123 |
+
|
124 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
125 |
+
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
|
126 |
+
return_attention_mask (`bool`, *optional*):
|
127 |
+
Whether to return the attention mask. If left to the default, will return the attention mask according
|
128 |
+
to the specific feature_extractor's default.
|
129 |
+
|
130 |
+
[What are attention masks?](../glossary#attention-mask)
|
131 |
+
|
132 |
+
<Tip>
|
133 |
+
|
134 |
+
Wav2Vec2 models that have set `config.feat_extract_norm == "group"`, such as
|
135 |
+
[wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base-960h), have **not** been trained using
|
136 |
+
`attention_mask`. For such models, `input_values` should simply be padded with 0 and no
|
137 |
+
`attention_mask` should be passed.
|
138 |
+
|
139 |
+
For Wav2Vec2 models that have set `config.feat_extract_norm == "layer"`, such as
|
140 |
+
[wav2vec2-lv60](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self), `attention_mask` should
|
141 |
+
be passed for batched inference.
|
142 |
+
|
143 |
+
</Tip>
|
144 |
+
|
145 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
146 |
+
If set, will return tensors instead of list of python integers. Acceptable values are:
|
147 |
+
|
148 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
149 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
150 |
+
- `'np'`: Return Numpy `np.ndarray` objects.
|
151 |
+
sampling_rate (`int`, *optional*):
|
152 |
+
The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
|
153 |
+
`sampling_rate` at the forward call to prevent silent errors.
|
154 |
+
padding_value (`float`, *optional*, defaults to 0.0):
|
155 |
+
"""
|
156 |
+
|
157 |
+
if sampling_rate is not None:
|
158 |
+
if sampling_rate != self.sampling_rate:
|
159 |
+
raise ValueError(
|
160 |
+
f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of"
|
161 |
+
f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"
|
162 |
+
f" {self.sampling_rate} and not {sampling_rate}."
|
163 |
+
)
|
164 |
+
else:
|
165 |
+
logger.warning(
|
166 |
+
"It is strongly recommended to pass the ``sampling_rate`` argument to this function. "
|
167 |
+
"Failing to do so can result in silent errors that might be hard to debug."
|
168 |
+
)
|
169 |
+
|
170 |
+
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
|
171 |
+
if is_batched_numpy and len(raw_speech.shape) > 2:
|
172 |
+
raise ValueError(f"Only mono-channel audio is supported for input to {self}")
|
173 |
+
is_batched = is_batched_numpy or (
|
174 |
+
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
|
175 |
+
)
|
176 |
+
|
177 |
+
# always return batch
|
178 |
+
if not is_batched:
|
179 |
+
raw_speech = [raw_speech]
|
180 |
+
|
181 |
+
# convert into correct format for padding
|
182 |
+
encoded_inputs = BatchFeature({"input_values": raw_speech})
|
183 |
+
|
184 |
+
padded_inputs = self.pad(
|
185 |
+
encoded_inputs,
|
186 |
+
padding=padding,
|
187 |
+
max_length=max_length,
|
188 |
+
truncation=truncation,
|
189 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
190 |
+
return_attention_mask=return_attention_mask,
|
191 |
+
)
|
192 |
+
|
193 |
+
# convert input values to correct format
|
194 |
+
input_values = padded_inputs["input_values"]
|
195 |
+
if not isinstance(input_values[0], np.ndarray):
|
196 |
+
padded_inputs["input_values"] = [np.asarray(array, dtype=np.float32) for array in input_values]
|
197 |
+
elif (
|
198 |
+
not isinstance(input_values, np.ndarray)
|
199 |
+
and isinstance(input_values[0], np.ndarray)
|
200 |
+
and input_values[0].dtype is np.dtype(np.float64)
|
201 |
+
):
|
202 |
+
padded_inputs["input_values"] = [array.astype(np.float32) for array in input_values]
|
203 |
+
elif isinstance(input_values, np.ndarray) and input_values.dtype is np.dtype(np.float64):
|
204 |
+
padded_inputs["input_values"] = input_values.astype(np.float32)
|
205 |
+
|
206 |
+
# convert attention_mask to correct format
|
207 |
+
attention_mask = padded_inputs.get("attention_mask")
|
208 |
+
if attention_mask is not None:
|
209 |
+
padded_inputs["attention_mask"] = [np.asarray(array, dtype=np.int32) for array in attention_mask]
|
210 |
+
|
211 |
+
# zero-mean and unit-variance normalization
|
212 |
+
if self.do_normalize:
|
213 |
+
attention_mask = (
|
214 |
+
attention_mask
|
215 |
+
if self._get_padding_strategies(padding, max_length=max_length) is not PaddingStrategy.DO_NOT_PAD
|
216 |
+
else None
|
217 |
+
)
|
218 |
+
padded_inputs["input_values"] = self.zero_mean_unit_var_norm(
|
219 |
+
padded_inputs["input_values"], attention_mask=attention_mask, padding_value=self.padding_value
|
220 |
+
)
|
221 |
+
|
222 |
+
if return_tensors is not None:
|
223 |
+
padded_inputs = padded_inputs.convert_to_tensors(return_tensors)
|
224 |
+
|
225 |
+
return padded_inputs
|
preprocessor_config.json
CHANGED
@@ -1,4 +1,7 @@
|
|
1 |
{
|
|
|
|
|
|
|
2 |
"do_normalize": true,
|
3 |
"feature_extractor_type": "Wav2Vec2SpkRegFeatureExtractor",
|
4 |
"feature_size": 1,
|
|
|
1 |
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoFeatureExtractor": "feature_extraction_wav2vec2_spkreg.Wav2Vec2SpkRegFeatureExtractor"
|
4 |
+
},
|
5 |
"do_normalize": true,
|
6 |
"feature_extractor_type": "Wav2Vec2SpkRegFeatureExtractor",
|
7 |
"feature_size": 1,
|