File size: 1,752 Bytes
b2d2798 20fc1f4 b2d2798 9eebc69 20fc1f4 b2d2798 20fc1f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: bigscience-openrail-m
base_model: ehsanaghaei/SecureBERT
tags:
- generated_from_trainer
- cybersecurity
metrics:
- accuracy
model-index:
- name: impact-cat-secbert
results: []
widget:
- text: >-
This flaw allows an attacker who has access to a virtual machine guest on a
node with DownwardMetrics enabled to cause a denial of service.
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# impact-cat-secbert
This model is a fine-tuned version of [ehsanaghaei/SecureBERT](https://huggingface.co/ehsanaghaei/SecureBERT) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1585
- Accuracy: 0.9434
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 128 | 0.2407 | 0.9023 |
| No log | 2.0 | 256 | 0.1664 | 0.9258 |
| No log | 3.0 | 384 | 0.1614 | 0.9434 |
| 0.423 | 4.0 | 512 | 0.1585 | 0.9434 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |