File size: 1,813 Bytes
0ddbbaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75e633c
 
0ddbbaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75e633c
 
 
 
 
 
 
 
0ddbbaf
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
base_model: allenai/scibert_scivocab_uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: my_awesome_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_awesome_model

This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5132
- Accuracy: 0.9034

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 88   | 0.3975          | 0.9006   |
| No log        | 2.0   | 176  | 0.3922          | 0.9034   |
| No log        | 3.0   | 264  | 0.4732          | 0.9034   |
| No log        | 4.0   | 352  | 0.5226          | 0.8949   |
| No log        | 5.0   | 440  | 0.4903          | 0.9034   |
| 0.0513        | 6.0   | 528  | 0.5203          | 0.9062   |
| 0.0513        | 7.0   | 616  | 0.5192          | 0.8949   |
| 0.0513        | 8.0   | 704  | 0.5132          | 0.9034   |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2