File size: 13,276 Bytes
6f68559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function ActorCriticPolicy.__init__ at 0x7df0e14aecb0>",
        "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7df0e14aed40>",
        "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7df0e14aedd0>",
        "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7df0e14aee60>",
        "_build": "<function ActorCriticPolicy._build at 0x7df0e14aeef0>",
        "forward": "<function ActorCriticPolicy.forward at 0x7df0e14aef80>",
        "extract_features": "<function ActorCriticPolicy.extract_features at 0x7df0e14af010>",
        "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7df0e14af0a0>",
        "_predict": "<function ActorCriticPolicy._predict at 0x7df0e14af130>",
        "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7df0e14af1c0>",
        "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7df0e14af250>",
        "predict_values": "<function ActorCriticPolicy.predict_values at 0x7df0e14af2e0>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x7df0e1443140>"
    },
    "verbose": 1,
    "policy_kwargs": {
        ":type:": "<class 'dict'>",
        ":serialized:": "gAWV4QAAAAAAAAB9lCiMCG5ldF9hcmNolH2UKIwCcGmUXZQoS0BLQGWMAnZmlF2UKEtAS0BldYwNYWN0aXZhdGlvbl9mbpSMG3RvcmNoLm5uLm1vZHVsZXMuYWN0aXZhdGlvbpSMBFJlTFWUk5SMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
        "net_arch": {
            "pi": [
                64,
                64
            ],
            "vf": [
                64,
                64
            ]
        },
        "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
        "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
        "optimizer_kwargs": {
            "alpha": 0.99,
            "eps": 1e-05,
            "weight_decay": 0
        }
    },
    "num_timesteps": 1000320,
    "_total_timesteps": 1000000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1698967319550806542,
    "learning_rate": 0.0024773196622019287,
    "tensorboard_log": null,
    "_last_obs": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAKkDvb6uL7C+jtkjO2lvwz6UJa6+0oYKvu4GXj2keyK+jeLBvgnffbxgVQm8LnhVvTm1pr7Syko9akjUvML+oTxF4729fIESv37Y9rwo7VM+Af+4vs/7Jb7oLM+8gvNtPiBL1b5Tx1W+V7C+PNAv5D5yUZe+CB4/ProbjLwBskC+0puyvrhZYr42s3S7MxwyPtv71r2BnmW+XVUou3PcR72UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwpLBIaUjAFDlHSUUpQu"
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYKAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwqFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": null,
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": -0.000320000000000098,
    "_stats_window_size": 100,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH9AAAAAAACMAWyUTfQBjAF0lEdAoBxsY2sJY3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAcb28qWkd1fZQoaAZHQH9AAAAAAABoB030AWgIR0CgHHUCA+Y/dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoByx9y925nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAdGaCtihF1fZQoaAZHQH9AAAAAAABoB030AWgIR0CgHTggX/HYdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoB1Wy3Td+HV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAdqhePaL51fZQoaAZHQH9AAAAAAABoB030AWgIR0CgHb5EMLF5dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoB3DZJ04i3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAei97F85V1fZQoaAZHQH9AAAAAAABoB030AWgIR0CgHo8D0UXYdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoB6Ulb/wRXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAe04QSSNh1fZQoaAZHQH9AAAAAAABoB030AWgIR0CgHz7yH2ytdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoB9UOkLx7XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAfeOLiuMd1fZQoaAZHQH9AAAAAAABoB030AWgIR0CgH8vDP4VRdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoB/abYsd1nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAf35Z8rqd1fZQoaAZHQH9AAAAAAABoB030AWgIR0CgIHLnkkrxdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoCB1jd56dHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAgeLl3hXN1fZQoaAZHQH9AAAAAAABoB030AWgIR0CgIJ7YTTOPdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoCDgI8hcJXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAg6znA6+51fZQoaAZHQH9AAAAAAABoB030AWgIR0CgIQH5aePJdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoCE4z3yqdnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAhR+3pfQd1fZQoaAZHQH9AAAAAAABoB030AWgIR0CgIUxIre67dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoCHFKPGQ0XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAhx8Aq/dt1fZQoaAZHQH9AAAAAAABoB030AWgIR0CgIcr/82rGdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoCHve54GEHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAiMIMz/Id1fZQoaAZHQH9AAAAAAABoB030AWgIR0CgIjwJXyRTdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoCJPLDAJs3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAiiRPGhmJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0CgIpA/LTx5dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoCKUmv4dqHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAjDlSS/0x1fZQoaAZHQH9AAAAAAABoB030AWgIR0CgIxDu0CzUdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoCMUKTjebnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAjO2FWXC11fZQoaAZHQH9AAAAAAABoB030AWgIR0CgI4DpTuOTdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoCOQFxGUfXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAjoqzZ6D51fZQoaAZHQH9AAAAAAABoB030AWgIR0CgI9cscyWSdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoCPh40Mw13V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAj5jlPrOZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0CgJGJPqLTAdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoCRk6PsAvXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAkaCRwIdF1fZQoaAZHQH9AAAAAAABoB030AWgIR0CgJIytV7x/dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoCTKl1r6+HV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAk20ygwoN1fZQoaAZHQH9AAAAAAABoB030AWgIR0CgJO3Cj1wpdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoCUkabWmQHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAlMJk5IYp1fZQoaAZHQH9AAAAAAABoB030AWgIR0CgJTT19ORDdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoCW36Q/5cnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAluoNNJvp1fZQoaAZHQH9AAAAAAABoB030AWgIR0CgJb3rleWwdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoCXkBKcurnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAmI9KVY6p1fZQoaAZHQH9AAAAAAABoB030AWgIR0CgJi/aHsTndX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoCZGgL7XQXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAmfLSNOud1fZQoaAZHQH9AAAAAAABoB030AWgIR0CgJoRkmQbNdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoCaIxrSE13V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAnCh24d6t1fZQoaAZHQH9AAAAAAABoB030AWgIR0CgJwy+QEIPdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoCcQKjSG8HV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAnN5GBnSR1fZQoaAZHQH9AAAAAAABoB030AWgIR0CgJ4YHHFP0dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoCeRs2vSt3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAnp4zJp351fZQoaAZHQH9AAAAAAABoB030AWgIR0CgJ9uEdvKmdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoCfiagElmnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAn5sZYPoV1fZQoaAZHQH9AAAAAAABoB030AWgIR0CgKF6PCEYgdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoChiJhvzfHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAoZjlPrOZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0CgKIuJ1q33dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoCjLoGIKt3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAo1zo2XLN1fZQoaAZHQH9AAAAAAABoB030AWgIR0CgKOzLfUF0dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoCkjIFNcnnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKApKxeLNwB1fZQoaAZHQH9AAAAAAABoB030AWgIR0CgKS94eLeidX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoCmxwl0HQnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAptGBnSOR1fZQoaAZHQH9AAAAAAABoB030AWgIR0CgKbe5e7cxdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoCnc01qFiHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAqGtTUAkt1fZQoaAZHQH9AAAAAAABoB030AWgIR0CgKinzg/C7dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoCo+weNkv3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKAqeKIi1Rd1fZQoaAZHQH9AAAAAAABoB030AWgIR0CgKn+vZAY6dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAoCqEBuGbkXVlLg=="
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 1563,
    "observation_space": {
        ":type:": "<class 'gymnasium.spaces.box.Box'>",
        ":serialized:": "gAWVEAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYEAAAAAAAAAAEBAQGUaBRLBIWUaBh0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgQKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaApLBIWUaBh0lFKUjARoaWdolGgQKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaApLBIWUaBh0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=",
        "dtype": "float32",
        "bounded_below": "[ True  True  True  True]",
        "bounded_above": "[ True  True  True  True]",
        "_shape": [
            4
        ],
        "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
        "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
        "low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
        "high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
        ":serialized:": "gAWVfwEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oR7u9U5SG5c9mDkc4p0cEA5QCMA2luY5SKEU0jEC17CwJPpLRqk4x7b68AdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==",
        "n": "2",
        "start": "0",
        "_shape": [],
        "dtype": "int64",
        "_np_random": "Generator(PCG64)"
    },
    "n_envs": 10,
    "n_steps": 64,
    "gamma": 0.9947122859856005,
    "gae_lambda": 1.0,
    "ent_coef": 0.0,
    "vf_coef": 0.5,
    "max_grad_norm": 4.893543457481427,
    "normalize_advantage": false,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9kS1DdyeRrhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
    }
}