ppo_lunarlander_hf
Browse files- .gitattributes +1 -0
- README.md +37 -3
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,37 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: ppo
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 276.07 +/- 16.71
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **ppo** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **ppo** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ed22d84fd80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ed22d84fe20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ed22d84fec0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ed22d84ff60>", "_build": "<function ActorCriticPolicy._build at 0x7ed22d854040>", "forward": "<function ActorCriticPolicy.forward at 0x7ed22d8540e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ed22d854180>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ed22d854220>", "_predict": "<function ActorCriticPolicy._predict at 0x7ed22d8542c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ed22d854360>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ed22d854400>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ed22d8544a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ed22d947b00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1752587554238947403, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAAAD9pI+09FYP3rocD5nEBy/q2KOPvGftbwAAAAAAAAAAJ27VL47Beq8iUEJOyyGjjnAO0s+N4A2ugAAgD8AAIA/pvm1vcPZdrz7PXU97wk4PS8X1z2i4Xw8AAAAAAAAAAD6iDS+FHubvKUf7bp7/Ua59bEMPnIJIjoAAIA/AACAP0116r0Upok5JAKCPoRIGr66rKA8JbqzvgAAAAAAAIA/AE/1vDaXKbxU6oy9K8MyPRqujD2XsA++AACAPwAAgD8axSq+aJOIvJAL4rvUxHK6/VrwPd7ORjsAAIA/AACAP5pKsDz2ZGW6uluhNkTk9y2sg7a6Zk+8tQAAgD8AAIA/zZY+PR2Hcz6vEw6+PFmsvoOJlDwf+Lu8AAAAAAAAAABd2qo+IOMbP1vLc738EPS+rQNEPujn6L0AAAAAAAAAAM0geT3DFkC85DKOvgaRC73vY6M9eAJMPgAAgD8AAIA/CpK8voeVtT6Q0CU+VhsSv8QUAb48cgc+AAAAAAAAAACz5zy+gW61vChSTzrFzjs5GAQePmbsvrkAAIA/AACAP7Ny/j1x6E67HtrqPKyBPbuNtIS8mjojvAAAgD8AAIA/zbJivR6Eoj0oZeo9UPtMvnh63Dpi9NU6AAAAAAAAAACmdfA9lOmVOzonL76vMSa+tOfdPJdOm7wAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGeChvitJaMAWyUTQwBjAF0lEdAoPUv9Nvfj3V9lChoBkdAR5dA3T/hl2gHS2RoCEdAoPUuglF+eHV9lChoBkdAMfSfL9uP3mgHS4NoCEdAoPWfs3Q2M3V9lChoBkdAYbBGSZBsymgHTegDaAhHQKD158w5/9Z1fZQoaAZHQHJdAjD8+A5oB0vlaAhHQKD2CA3DNyJ1fZQoaAZHQHEdoNutOmBoB0vLaAhHQKD2MsUZeiV1fZQoaAZHwABpwKjSG8FoB0t4aAhHQKD2ODsdDIB1fZQoaAZHQHF7unZTQ3RoB0u7aAhHQKD2R3PiT+x1fZQoaAZHQHAAhtYSxqxoB0u6aAhHQKD2SuxKQJZ1fZQoaAZHQHLMiKrJbMZoB0u/aAhHQKD2SMCtA9p1fZQoaAZHQHLLhBzFMqVoB0v7aAhHQKD2yT/Q0Gh1fZQoaAZHQHCgpUPxx1hoB0ulaAhHQKD2+KoAGSp1fZQoaAZHQHB07fYSQHRoB0vRaAhHQKD3GeZof0V1fZQoaAZHQHJjBiw0O3FoB00lAWgIR0Cg9ytt65XmdX2UKGgGR0Bx23FrEcbSaAdLwGgIR0Cg91lKkEcLdX2UKGgGR0BvoHl0YCQtaAdLyWgIR0Cg92+WGATadX2UKGgGR0Bzp5nEl3QlaAdL2WgIR0Cg+F22PT5PdX2UKGgGR0Bxri2rn1WbaAdLxmgIR0Cg+HuZTho/dX2UKGgGR0BQUnH/95yEaAdLlWgIR0Cg+NEeyRjjdX2UKGgGR0BzXUXUH6dlaAdL3GgIR0Cg+NWFWXC1dX2UKGgGR0BycB7PY4ACaAdL4WgIR0Cg+PxnvlU7dX2UKGgGR0ByzBp9JBgNaAdL9mgIR0Cg+UwLE1l5dX2UKGgGR0BvfBciW3SbaAdL4WgIR0Cg+ak2pAD8dX2UKGgGR0BwfzyGzru6aAdLwGgIR0Cg+a2Qnx8VdX2UKGgGR0ByT3Yh+vyLaAdNEwFoCEdAoPm49A5aNnV9lChoBkdAcirp+MIeHWgHS+1oCEdAoPouPJaJRHV9lChoBkdAb7jcpsoDxWgHS9BoCEdAoPo1NrTH83V9lChoBkdAc367Q9ic5WgHS/NoCEdAoPqwFPi1iXV9lChoBkdAcB95WilBQmgHS8poCEdAoPuerXDm83V9lChoBkdAcjQBkZrHl2gHS/BoCEdAoPwokcCHRHV9lChoBkdAcCXht+CsfmgHS7VoCEdAoPy2wxFiKHV9lChoBkdAb2JhiLEUCmgHS+9oCEdAoPzqe05U+HV9lChoBkdAcrzCLMs6JmgHTQMBaAhHQKD9ENayKN11fZQoaAZHQHEMkBXCCSRoB00JAWgIR0Cg/TJL/S6UdX2UKGgGR0BxcnwBo24vaAdL8mgIR0Cg/WS1uzhQdX2UKGgGR0BwwhfG+9J0aAdL72gIR0Cg/cqoIfKZdX2UKGgGR0BzIVAdGRV7aAdL+GgIR0Cg/hFUADJVdX2UKGgGR0BxwjADaGpNaAdL4mgIR0Cg/l5ftx+8dX2UKGgGR0Bx5kf7rLQpaAdL12gIR0Cg/qobfgrIdX2UKGgGR0Bw6cprk8zRaAdL5mgIR0Cg/5tCJGe+dX2UKGgGR0Bwu/u/k/8maAdL3WgIR0Cg/+b04BFNdX2UKGgGR0BwXGs0YTCcaAdLuGgIR0Cg//Zof0VadX2UKGgGR0BzRGnDR+jNaAdLxmgIR0ChAEYUvf0mdX2UKGgGR0BKjm2b5M11aAdLf2gIR0ChAHQhGH58dX2UKGgGR0BxOBlUZNwjaAdL5mgIR0ChAHv2wmmcdX2UKGgGR0BwVUX1rZanaAdL0mgIR0ChALC7CiyqdX2UKGgGR0ByGPZ39rGjaAdL+2gIR0ChAS2KMvRJdX2UKGgGR0BwLP2Dg62faAdL02gIR0ChAUBY/3WXdX2UKGgGR0Bxv0od+5OKaAdLz2gIR0ChAWsA/9pAdX2UKGgGR0Bwxz8m8dxRaAdL+mgIR0ChAZzZg5R1dX2UKGgGR0BkV3meUY8/aAdN6ANoCEdAoQIxrBTGYXV9lChoBkdAc4j+EytV72gHS8poCEdAoQKEIgNgB3V9lChoBkdAZXKWTHKfWmgHTegDaAhHQKEC+q/dqL11fZQoaAZHQHIHdIClrM1oB0vmaAhHQKEDPm/336B1fZQoaAZHQHC/Ma0hNdtoB0vCaAhHQKEDR0fYBeZ1fZQoaAZHQHFrD8YQ8OloB0vBaAhHQKEDf+Jgssh1fZQoaAZHQHA1YN/e+EhoB0veaAhHQKEDtGUfPop1fZQoaAZHQHIlEe6qbSZoB0vvaAhHQKEDvx3mmtR1fZQoaAZHQHJKZpSJj2BoB00QAWgIR0ChA+UrbxmTdX2UKGgGR0BlFyFyq+8HaAdN6ANoCEdAoQQx8OTaCnV9lChoBkdAb9+AtnPE9GgHS9ZoCEdAoQQ2oYNy53V9lChoBkdAW8KDXe3x4WgHTegDaAhHQKEEm+pOvdN1fZQoaAZHQHDDhew9q1xoB0vaaAhHQKEEoydnTRZ1fZQoaAZHQHGPfMKTjedoB00DAWgIR0ChBOulwcYJdX2UKGgGR0Bv1asySFGoaAdL02gIR0ChBQFyaNModX2UKGgGR0BxvCQ4jrzHaAdL4mgIR0ChBXXdsSCfdX2UKGgGR0Bwc8i3XqZ/aAdL32gIR0ChBdWM85jpdX2UKGgGR0Bw1ASkCV8kaAdL0GgIR0ChBeJyyUs4dX2UKGgGR0Bu/lMwlByCaAdL12gIR0ChBfBc7hegdX2UKGgGR0BySdqfvnbJaAdL0mgIR0ChBhcT8HfNdX2UKGgGR0ARLGS6lLvkaAdLh2gIR0ChBjaDGtITdX2UKGgGR0BxO7z8P4EfaAdL7GgIR0ChBp7HAAQydX2UKGgGR0Bxu3NmlImPaAdL7WgIR0ChBsRusLfDdX2UKGgGR0BxNNowmE5AaAdL5WgIR0ChBvdTHbRGdX2UKGgGR0BxU2rFOwgUaAdLymgIR0ChBxD8UEgXdX2UKGgGR0Bv0NIoVmBfaAdLtGgIR0ChBzcdxQzldX2UKGgGR0By6bcSGrS3aAdNEgFoCEdAoQeG7J4jbHV9lChoBkdAcW3ZfD1oQGgHTQQBaAhHQKEIJeyAxzt1fZQoaAZHQHCQtOdoWYZoB0vfaAhHQKEIQUmD15B1fZQoaAZHQHBtyZKFqSJoB0vDaAhHQKEIYRqXWvt1fZQoaAZHQHEk3qZ+hGpoB0vZaAhHQKEImlVtGd91fZQoaAZHQGJAZ7gKneloB03oA2gIR0ChCL8Jlar4dX2UKGgGR0By4ozEaVD8aAdL8GgIR0ChCNmcvugIdX2UKGgGR0BxaMzKs+3ZaAdL7WgIR0ChCRS8rZrYdX2UKGgGR0BxWdhYvFm4aAdL5mgIR0ChCSATRIBjdX2UKGgGR0BxPV1r6+FlaAdLwGgIR0ChCYoVmBe5dX2UKGgGR0Bvn0IeHSF5aAdL22gIR0ChCZP3SKFadX2UKGgGR0BxhgunMt9QaAdL4mgIR0ChCd6reZXudX2UKGgGR0BwagFzMibEaAdL02gIR0ChCxUC7sfJdX2UKGgGR0BzHiA2AG0NaAdNFwFoCEdAoQtC/wiJO3V9lChoBkdAchnNKAavR2gHTWUBaAhHQKELXeXRgJF1fZQoaAZHQHBQmfwqiGpoB0vSaAhHQKELgzguRLd1fZQoaAZHQHGkOfukUK1oB00HAWgIR0ChC8OwosqbdX2UKGgGR0BvEfyiEg4faAdL5GgIR0ChDA6tcObzdX2UKGgGR0Bxbv0btJFtaAdL2mgIR0ChDC/IbOu8dX2UKGgGR0ByBGhXbM5faAdL/WgIR0ChDFJPIn0DdX2UKGgGR0BxhLHZK3/haAdL62gIR0ChDIcq4H5adX2UKGgGR0BxJMna37UHaAdL2GgIR0ChDLCkwevIdX2UKGgGR0BuQWbobGWEaAdL12gIR0ChDLeevpyIdX2UKGgGR0Bw5Wndfsu4aAdL32gIR0ChDR9IXj2jdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVGQQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIwTbnVtcHkucmFuZG9tLl9wY2c2NJSMBVBDRzY0lJOUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaD+KENZOoXCvxOVh8URFXaPtSxCMA2luY5SKEG3hy00NdVIFy65gUYcILyt1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHWMGm51bXB5LnJhbmRvbS5iaXRfZ2VuZXJhdG9ylIwbX19weXhfdW5waWNrbGVfU2VlZFNlcXVlbmNllJOUaESMDFNlZWRTZXF1ZW5jZZSTlEoiouoDToeUUpQoihEWdwrtyw2KDpZOt0GLRwSKAEsAaBEolhAAAAAAAAAAYDpisi0r3EQWBFZ4ynWAppRoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGJLBIWUaBl0lFKUSwQpdJRihpRihZRSlHViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.02, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025", "Python": "3.11.13", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.6.0+cu124", "GPU Enabled": "True", "Numpy": "2.0.2", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5edbfbccdf8f36f1d883ebf4db711afef25a6af048d91aa61e2d326cfe2edff4
|
3 |
+
size 148598
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ed22d84fd80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ed22d84fe20>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ed22d84fec0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ed22d84ff60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ed22d854040>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ed22d8540e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ed22d854180>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ed22d854220>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ed22d8542c0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ed22d854360>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ed22d854400>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ed22d8544a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ed22d947b00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1752587554238947403,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAAAD9pI+09FYP3rocD5nEBy/q2KOPvGftbwAAAAAAAAAAJ27VL47Beq8iUEJOyyGjjnAO0s+N4A2ugAAgD8AAIA/pvm1vcPZdrz7PXU97wk4PS8X1z2i4Xw8AAAAAAAAAAD6iDS+FHubvKUf7bp7/Ua59bEMPnIJIjoAAIA/AACAP0116r0Upok5JAKCPoRIGr66rKA8JbqzvgAAAAAAAIA/AE/1vDaXKbxU6oy9K8MyPRqujD2XsA++AACAPwAAgD8axSq+aJOIvJAL4rvUxHK6/VrwPd7ORjsAAIA/AACAP5pKsDz2ZGW6uluhNkTk9y2sg7a6Zk+8tQAAgD8AAIA/zZY+PR2Hcz6vEw6+PFmsvoOJlDwf+Lu8AAAAAAAAAABd2qo+IOMbP1vLc738EPS+rQNEPujn6L0AAAAAAAAAAM0geT3DFkC85DKOvgaRC73vY6M9eAJMPgAAgD8AAIA/CpK8voeVtT6Q0CU+VhsSv8QUAb48cgc+AAAAAAAAAACz5zy+gW61vChSTzrFzjs5GAQePmbsvrkAAIA/AACAP7Ny/j1x6E67HtrqPKyBPbuNtIS8mjojvAAAgD8AAIA/zbJivR6Eoj0oZeo9UPtMvnh63Dpi9NU6AAAAAAAAAACmdfA9lOmVOzonL76vMSa+tOfdPJdOm7wAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV8gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGeChvitJaMAWyUTQwBjAF0lEdAoPUv9Nvfj3V9lChoBkdAR5dA3T/hl2gHS2RoCEdAoPUuglF+eHV9lChoBkdAMfSfL9uP3mgHS4NoCEdAoPWfs3Q2M3V9lChoBkdAYbBGSZBsymgHTegDaAhHQKD158w5/9Z1fZQoaAZHQHJdAjD8+A5oB0vlaAhHQKD2CA3DNyJ1fZQoaAZHQHEdoNutOmBoB0vLaAhHQKD2MsUZeiV1fZQoaAZHwABpwKjSG8FoB0t4aAhHQKD2ODsdDIB1fZQoaAZHQHF7unZTQ3RoB0u7aAhHQKD2R3PiT+x1fZQoaAZHQHAAhtYSxqxoB0u6aAhHQKD2SuxKQJZ1fZQoaAZHQHLMiKrJbMZoB0u/aAhHQKD2SMCtA9p1fZQoaAZHQHLLhBzFMqVoB0v7aAhHQKD2yT/Q0Gh1fZQoaAZHQHCgpUPxx1hoB0ulaAhHQKD2+KoAGSp1fZQoaAZHQHB07fYSQHRoB0vRaAhHQKD3GeZof0V1fZQoaAZHQHJjBiw0O3FoB00lAWgIR0Cg9ytt65XmdX2UKGgGR0Bx23FrEcbSaAdLwGgIR0Cg91lKkEcLdX2UKGgGR0BvoHl0YCQtaAdLyWgIR0Cg92+WGATadX2UKGgGR0Bzp5nEl3QlaAdL2WgIR0Cg+F22PT5PdX2UKGgGR0Bxri2rn1WbaAdLxmgIR0Cg+HuZTho/dX2UKGgGR0BQUnH/95yEaAdLlWgIR0Cg+NEeyRjjdX2UKGgGR0BzXUXUH6dlaAdL3GgIR0Cg+NWFWXC1dX2UKGgGR0BycB7PY4ACaAdL4WgIR0Cg+PxnvlU7dX2UKGgGR0ByzBp9JBgNaAdL9mgIR0Cg+UwLE1l5dX2UKGgGR0BvfBciW3SbaAdL4WgIR0Cg+ak2pAD8dX2UKGgGR0BwfzyGzru6aAdLwGgIR0Cg+a2Qnx8VdX2UKGgGR0ByT3Yh+vyLaAdNEwFoCEdAoPm49A5aNnV9lChoBkdAcirp+MIeHWgHS+1oCEdAoPouPJaJRHV9lChoBkdAb7jcpsoDxWgHS9BoCEdAoPo1NrTH83V9lChoBkdAc367Q9ic5WgHS/NoCEdAoPqwFPi1iXV9lChoBkdAcB95WilBQmgHS8poCEdAoPuerXDm83V9lChoBkdAcjQBkZrHl2gHS/BoCEdAoPwokcCHRHV9lChoBkdAcCXht+CsfmgHS7VoCEdAoPy2wxFiKHV9lChoBkdAb2JhiLEUCmgHS+9oCEdAoPzqe05U+HV9lChoBkdAcrzCLMs6JmgHTQMBaAhHQKD9ENayKN11fZQoaAZHQHEMkBXCCSRoB00JAWgIR0Cg/TJL/S6UdX2UKGgGR0BxcnwBo24vaAdL8mgIR0Cg/WS1uzhQdX2UKGgGR0BwwhfG+9J0aAdL72gIR0Cg/cqoIfKZdX2UKGgGR0BzIVAdGRV7aAdL+GgIR0Cg/hFUADJVdX2UKGgGR0BxwjADaGpNaAdL4mgIR0Cg/l5ftx+8dX2UKGgGR0Bx5kf7rLQpaAdL12gIR0Cg/qobfgrIdX2UKGgGR0Bw6cprk8zRaAdL5mgIR0Cg/5tCJGe+dX2UKGgGR0Bwu/u/k/8maAdL3WgIR0Cg/+b04BFNdX2UKGgGR0BwXGs0YTCcaAdLuGgIR0Cg//Zof0VadX2UKGgGR0BzRGnDR+jNaAdLxmgIR0ChAEYUvf0mdX2UKGgGR0BKjm2b5M11aAdLf2gIR0ChAHQhGH58dX2UKGgGR0BxOBlUZNwjaAdL5mgIR0ChAHv2wmmcdX2UKGgGR0BwVUX1rZanaAdL0mgIR0ChALC7CiyqdX2UKGgGR0ByGPZ39rGjaAdL+2gIR0ChAS2KMvRJdX2UKGgGR0BwLP2Dg62faAdL02gIR0ChAUBY/3WXdX2UKGgGR0Bxv0od+5OKaAdLz2gIR0ChAWsA/9pAdX2UKGgGR0Bwxz8m8dxRaAdL+mgIR0ChAZzZg5R1dX2UKGgGR0BkV3meUY8/aAdN6ANoCEdAoQIxrBTGYXV9lChoBkdAc4j+EytV72gHS8poCEdAoQKEIgNgB3V9lChoBkdAZXKWTHKfWmgHTegDaAhHQKEC+q/dqL11fZQoaAZHQHIHdIClrM1oB0vmaAhHQKEDPm/336B1fZQoaAZHQHC/Ma0hNdtoB0vCaAhHQKEDR0fYBeZ1fZQoaAZHQHFrD8YQ8OloB0vBaAhHQKEDf+Jgssh1fZQoaAZHQHA1YN/e+EhoB0veaAhHQKEDtGUfPop1fZQoaAZHQHIlEe6qbSZoB0vvaAhHQKEDvx3mmtR1fZQoaAZHQHJKZpSJj2BoB00QAWgIR0ChA+UrbxmTdX2UKGgGR0BlFyFyq+8HaAdN6ANoCEdAoQQx8OTaCnV9lChoBkdAb9+AtnPE9GgHS9ZoCEdAoQQ2oYNy53V9lChoBkdAW8KDXe3x4WgHTegDaAhHQKEEm+pOvdN1fZQoaAZHQHDDhew9q1xoB0vaaAhHQKEEoydnTRZ1fZQoaAZHQHGPfMKTjedoB00DAWgIR0ChBOulwcYJdX2UKGgGR0Bv1asySFGoaAdL02gIR0ChBQFyaNModX2UKGgGR0BxvCQ4jrzHaAdL4mgIR0ChBXXdsSCfdX2UKGgGR0Bwc8i3XqZ/aAdL32gIR0ChBdWM85jpdX2UKGgGR0Bw1ASkCV8kaAdL0GgIR0ChBeJyyUs4dX2UKGgGR0Bu/lMwlByCaAdL12gIR0ChBfBc7hegdX2UKGgGR0BySdqfvnbJaAdL0mgIR0ChBhcT8HfNdX2UKGgGR0ARLGS6lLvkaAdLh2gIR0ChBjaDGtITdX2UKGgGR0BxO7z8P4EfaAdL7GgIR0ChBp7HAAQydX2UKGgGR0Bxu3NmlImPaAdL7WgIR0ChBsRusLfDdX2UKGgGR0BxNNowmE5AaAdL5WgIR0ChBvdTHbRGdX2UKGgGR0BxU2rFOwgUaAdLymgIR0ChBxD8UEgXdX2UKGgGR0Bv0NIoVmBfaAdLtGgIR0ChBzcdxQzldX2UKGgGR0By6bcSGrS3aAdNEgFoCEdAoQeG7J4jbHV9lChoBkdAcW3ZfD1oQGgHTQQBaAhHQKEIJeyAxzt1fZQoaAZHQHCQtOdoWYZoB0vfaAhHQKEIQUmD15B1fZQoaAZHQHBtyZKFqSJoB0vDaAhHQKEIYRqXWvt1fZQoaAZHQHEk3qZ+hGpoB0vZaAhHQKEImlVtGd91fZQoaAZHQGJAZ7gKneloB03oA2gIR0ChCL8Jlar4dX2UKGgGR0By4ozEaVD8aAdL8GgIR0ChCNmcvugIdX2UKGgGR0BxaMzKs+3ZaAdL7WgIR0ChCRS8rZrYdX2UKGgGR0BxWdhYvFm4aAdL5mgIR0ChCSATRIBjdX2UKGgGR0BxPV1r6+FlaAdLwGgIR0ChCYoVmBe5dX2UKGgGR0Bvn0IeHSF5aAdL22gIR0ChCZP3SKFadX2UKGgGR0BxhgunMt9QaAdL4mgIR0ChCd6reZXudX2UKGgGR0BwagFzMibEaAdL02gIR0ChCxUC7sfJdX2UKGgGR0BzHiA2AG0NaAdNFwFoCEdAoQtC/wiJO3V9lChoBkdAchnNKAavR2gHTWUBaAhHQKELXeXRgJF1fZQoaAZHQHBQmfwqiGpoB0vSaAhHQKELgzguRLd1fZQoaAZHQHGkOfukUK1oB00HAWgIR0ChC8OwosqbdX2UKGgGR0BvEfyiEg4faAdL5GgIR0ChDA6tcObzdX2UKGgGR0Bxbv0btJFtaAdL2mgIR0ChDC/IbOu8dX2UKGgGR0ByBGhXbM5faAdL/WgIR0ChDFJPIn0DdX2UKGgGR0BxhLHZK3/haAdL62gIR0ChDIcq4H5adX2UKGgGR0BxJMna37UHaAdL2GgIR0ChDLCkwevIdX2UKGgGR0BuQWbobGWEaAdL12gIR0ChDLeevpyIdX2UKGgGR0Bw5Wndfsu4aAdL32gIR0ChDR9IXj2jdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVGQQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIwTbnVtcHkucmFuZG9tLl9wY2c2NJSMBVBDRzY0lJOUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaD+KENZOoXCvxOVh8URFXaPtSxCMA2luY5SKEG3hy00NdVIFy65gUYcILyt1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHWMGm51bXB5LnJhbmRvbS5iaXRfZ2VuZXJhdG9ylIwbX19weXhfdW5waWNrbGVfU2VlZFNlcXVlbmNllJOUaESMDFNlZWRTZXF1ZW5jZZSTlEoiouoDToeUUpQoihEWdwrtyw2KDpZOt0GLRwSKAEsAaBEolhAAAAAAAAAAYDpisi0r3EQWBFZ4ynWAppRoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGJLBIWUaBl0lFKUSwQpdJRihpRihZRSlHViLg==",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": "Generator(PCG64)"
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.02,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a59772e45db04b0753aae9c3769fef15e496030b9da414100cd9c3567ae34f8a
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11158aedef5147ebefe82622c0a56ae72d473d1792804faecb2d13956d0841f8
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025
|
2 |
+
- Python: 3.11.13
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.6.0+cu124
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 2.0.2
|
7 |
+
- Cloudpickle: 3.1.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ff5dc859b930df5557c6a5765d4a6537585326c40933375289c90182b8b0299
|
3 |
+
size 152655
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 276.07006549999994, "std_reward": 16.714395147022085, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-07-15T14:26:05.947641"}
|