--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: test_model_8 results: [] --- # test_model_8 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8797 - F1 Macro: 0.0598 - F1 Micro: 0.2121 - F1 Weighted: 0.0845 - Precision Macro: 0.1723 - Precision Micro: 0.2121 - Precision Weighted: 0.2316 - Recall Macro: 0.1486 - Recall Micro: 0.2121 - Recall Weighted: 0.2121 - Accuracy: 0.2121 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | F1 Weighted | Precision Macro | Precision Micro | Precision Weighted | Recall Macro | Recall Micro | Recall Weighted | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------:|:---------------:|:---------------:|:------------------:|:------------:|:------------:|:---------------:|:--------:| | 1.9439 | 0.8 | 3 | 1.9065 | 0.0541 | 0.1894 | 0.0764 | 0.0625 | 0.1894 | 0.0857 | 0.1327 | 0.1894 | 0.1894 | 0.1894 | | 1.9049 | 1.8 | 6 | 1.8820 | 0.0578 | 0.2045 | 0.0818 | 0.0501 | 0.2045 | 0.0696 | 0.1433 | 0.2045 | 0.2045 | 0.2045 | | 2.3436 | 2.8 | 9 | 1.8773 | 0.0738 | 0.1894 | 0.1022 | 0.0567 | 0.1894 | 0.0780 | 0.1348 | 0.1894 | 0.1894 | 0.1894 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0