--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: test_model_90 results: [] --- # test_model_90 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the corranm/first_vote_100_per_new2 dataset. It achieves the following results on the evaluation set: - Loss: 1.8966 - F1 Macro: 0.1255 - F1 Micro: 0.2652 - F1 Weighted: 0.1671 - Precision Macro: 0.1232 - Precision Micro: 0.2652 - Precision Weighted: 0.1573 - Recall Macro: 0.1971 - Recall Micro: 0.2652 - Recall Weighted: 0.2652 - Accuracy: 0.2652 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | F1 Weighted | Precision Macro | Precision Micro | Precision Weighted | Recall Macro | Recall Micro | Recall Weighted | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------:|:---------------:|:---------------:|:------------------:|:------------:|:------------:|:---------------:|:--------:| | 1.9497 | 0.8 | 3 | 1.8943 | 0.1087 | 0.2197 | 0.1434 | 0.1559 | 0.2197 | 0.1899 | 0.1632 | 0.2197 | 0.2197 | 0.2197 | | 1.8932 | 1.8 | 6 | 1.8811 | 0.0832 | 0.2121 | 0.1143 | 0.0925 | 0.2121 | 0.1296 | 0.1579 | 0.2121 | 0.2121 | 0.2121 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0