File size: 2,078 Bytes
02bd9b9 557d482 02bd9b9 557d482 02bd9b9 557d482 5b4f772 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-distilled-clinc
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-distilled-clinc
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3426
- Accuracy: 0.9481
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 3.8162 | 1.0 | 318 | 2.8321 | 0.7381 |
| 2.1655 | 2.0 | 636 | 1.4157 | 0.8658 |
| 1.0801 | 3.0 | 954 | 0.7461 | 0.9142 |
| 0.568 | 4.0 | 1272 | 0.4911 | 0.9319 |
| 0.3528 | 5.0 | 1590 | 0.3975 | 0.9397 |
| 0.2606 | 6.0 | 1908 | 0.3712 | 0.9403 |
| 0.2195 | 7.0 | 2226 | 0.3510 | 0.9471 |
| 0.1971 | 8.0 | 2544 | 0.3467 | 0.9468 |
| 0.1862 | 9.0 | 2862 | 0.3450 | 0.9468 |
| 0.181 | 10.0 | 3180 | 0.3426 | 0.9481 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1
- Datasets 3.2.0
- Tokenizers 0.21.0
|