File size: 1,429 Bytes
3fc3e33
a86c132
 
 
 
 
 
 
3fc3e33
 
a86c132
 
3fc3e33
a86c132
3fc3e33
a86c132
 
 
 
 
 
 
 
 
3fc3e33
a86c132
3fc3e33
a86c132
3fc3e33
a86c132
3fc3e33
a86c132
3fc3e33
a86c132
3fc3e33
a86c132
3fc3e33
a86c132
3fc3e33
a86c132
3fc3e33
a86c132
 
 
 
 
 
 
 
 
 
 
 
3fc3e33
a86c132
3fc3e33
a86c132
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
model-index:
- name: CS224S_Quechua_Project_Expanded_Dataset
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CS224S_Quechua_Project_Expanded_Dataset

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 1.1653
- eval_wer: 0.9562
- eval_runtime: 56.4123
- eval_samples_per_second: 11.629
- eval_steps_per_second: 1.454
- epoch: 6.5041
- step: 9600

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 70
- num_epochs: 10
- mixed_precision_training: Native AMP

### Framework versions

- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1