import torch import torch.nn as nn import torch.nn.functional as F from .layers import * class PAA_kernel(nn.Module): def __init__(self, in_channel, out_channel, receptive_size, stage_size=None): super(PAA_kernel, self).__init__() self.conv0 = Conv2d(in_channel, out_channel, 1) self.conv1 = Conv2d(out_channel, out_channel, kernel_size=(1, receptive_size)) self.conv2 = Conv2d(out_channel, out_channel, kernel_size=(receptive_size, 1)) self.conv3 = Conv2d(out_channel, out_channel, 3, dilation=receptive_size) self.Hattn = SelfAttention(out_channel, 'h', stage_size[0] if stage_size is not None else None) self.Wattn = SelfAttention(out_channel, 'w', stage_size[1] if stage_size is not None else None) def forward(self, x): x = self.conv0(x) x = self.conv1(x) x = self.conv2(x) Hx = self.Hattn(x) Wx = self.Wattn(x) x = self.conv3(Hx + Wx) return x class PAA_e(nn.Module): def __init__(self, in_channel, out_channel, base_size=None, stage=None): super(PAA_e, self).__init__() self.relu = nn.ReLU(True) if base_size is not None and stage is not None: self.stage_size = (base_size[0] // (2 ** stage), base_size[1] // (2 ** stage)) else: self.stage_size = None self.branch0 = Conv2d(in_channel, out_channel, 1) self.branch1 = PAA_kernel(in_channel, out_channel, 3, self.stage_size) self.branch2 = PAA_kernel(in_channel, out_channel, 5, self.stage_size) self.branch3 = PAA_kernel(in_channel, out_channel, 7, self.stage_size) self.conv_cat = Conv2d(4 * out_channel, out_channel, 3) self.conv_res = Conv2d(in_channel, out_channel, 1) def forward(self, x): x0 = self.branch0(x) x1 = self.branch1(x) x2 = self.branch2(x) x3 = self.branch3(x) x_cat = self.conv_cat(torch.cat((x0, x1, x2, x3), 1)) x = self.relu(x_cat + self.conv_res(x)) return x