from optparse import Option import torch import torch.nn as nn import torch.nn.functional as F import cv2 import numpy as np from kornia.morphology import dilation, erosion from torch.nn.parameter import Parameter from typing import Optional class ImagePyramid: def __init__(self, ksize=7, sigma=1, channels=1): self.ksize = ksize self.sigma = sigma self.channels = channels k = cv2.getGaussianKernel(ksize, sigma) k = np.outer(k, k) k = torch.tensor(k).float() self.kernel = k.repeat(channels, 1, 1, 1) def to(self, device): self.kernel = self.kernel.to(device) return self def cuda(self, idx=None): if idx is None: idx = torch.cuda.current_device() self.to(device="cuda:{}".format(idx)) return self def expand(self, x): z = torch.zeros_like(x) x = torch.cat([x, z, z, z], dim=1) x = F.pixel_shuffle(x, 2) x = F.pad(x, (self.ksize // 2, ) * 4, mode='reflect') x = F.conv2d(x, self.kernel * 4, groups=self.channels) return x def reduce(self, x): x = F.pad(x, (self.ksize // 2, ) * 4, mode='reflect') x = F.conv2d(x, self.kernel, groups=self.channels) x = x[:, :, ::2, ::2] return x def deconstruct(self, x): reduced_x = self.reduce(x) expanded_reduced_x = self.expand(reduced_x) if x.shape != expanded_reduced_x.shape: expanded_reduced_x = F.interpolate(expanded_reduced_x, x.shape[-2:]) laplacian_x = x - expanded_reduced_x return reduced_x, laplacian_x def reconstruct(self, x, laplacian_x): expanded_x = self.expand(x) if laplacian_x.shape != expanded_x: laplacian_x = F.interpolate(laplacian_x, expanded_x.shape[-2:], mode='bilinear', align_corners=True) return expanded_x + laplacian_x class Transition: def __init__(self, k=3): self.kernel = torch.tensor(cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (k, k))).float() def to(self, device): self.kernel = self.kernel.to(device) return self def cuda(self, idx=None): if idx is None: idx = torch.cuda.current_device() self.to(device="cuda:{}".format(idx)) return self def __call__(self, x): x = torch.sigmoid(x) dx = dilation(x, self.kernel) ex = erosion(x, self.kernel) return ((dx - ex) > .5).float() class Conv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, padding='same', bias=False, bn=True, relu=False): super(Conv2d, self).__init__() if '__iter__' not in dir(kernel_size): kernel_size = (kernel_size, kernel_size) if '__iter__' not in dir(stride): stride = (stride, stride) if '__iter__' not in dir(dilation): dilation = (dilation, dilation) if padding == 'same': width_pad_size = kernel_size[0] + (kernel_size[0] - 1) * (dilation[0] - 1) height_pad_size = kernel_size[1] + (kernel_size[1] - 1) * (dilation[1] - 1) elif padding == 'valid': width_pad_size = 0 height_pad_size = 0 else: if '__iter__' in dir(padding): width_pad_size = padding[0] * 2 height_pad_size = padding[1] * 2 else: width_pad_size = padding * 2 height_pad_size = padding * 2 width_pad_size = width_pad_size // 2 + (width_pad_size % 2 - 1) height_pad_size = height_pad_size // 2 + (height_pad_size % 2 - 1) pad_size = (width_pad_size, height_pad_size) self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, pad_size, dilation, groups, bias=bias) self.reset_parameters() if bn is True: self.bn = nn.BatchNorm2d(out_channels) else: self.bn = None if relu is True: self.relu = nn.ReLU(inplace=True) else: self.relu = None def forward(self, x): x = self.conv(x) if self.bn is not None: x = self.bn(x) if self.relu is not None: x = self.relu(x) return x def reset_parameters(self): nn.init.kaiming_normal_(self.conv.weight) class SelfAttention(nn.Module): def __init__(self, in_channels, mode='hw', stage_size=None): super(SelfAttention, self).__init__() self.mode = mode self.query_conv = Conv2d(in_channels, in_channels // 8, kernel_size=(1, 1)) self.key_conv = Conv2d(in_channels, in_channels // 8, kernel_size=(1, 1)) self.value_conv = Conv2d(in_channels, in_channels, kernel_size=(1, 1)) self.gamma = Parameter(torch.zeros(1)) self.softmax = nn.Softmax(dim=-1) self.stage_size = stage_size def forward(self, x): batch_size, channel, height, width = x.size() axis = 1 if 'h' in self.mode: axis *= height if 'w' in self.mode: axis *= width view = (batch_size, -1, axis) projected_query = self.query_conv(x).view(*view).permute(0, 2, 1) projected_key = self.key_conv(x).view(*view) attention_map = torch.bmm(projected_query, projected_key) attention = self.softmax(attention_map) projected_value = self.value_conv(x).view(*view) out = torch.bmm(projected_value, attention.permute(0, 2, 1)) out = out.view(batch_size, channel, height, width) out = self.gamma * out + x return out